• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicação da teoria de representação de funções isotrópicas em sólidos hiperelásticos com duas direções de simetria material / Application of the theory of isotropic function representation in hyperelastic solids with two materials symmetry directions

Rocha, Gabriel Lopes da 09 August 2017 (has links)
Aplicamos a teoria de representação de funções isotrópicas para determinar o número mínimo de invariantes independentes necessários para caracterizar completamente a densidade de energia de deformação de sólido hiperelástico com duas direções de simetria material. Expressamos a densidade de energia em termos de dezoito invariantes e extraímos um conjunto de dez invariantes para analisar dois casos de simetria material. No caso de direções ortogonais, recuperamos o resultado clássico de sete invariantes e oferecemos uma justificativa para a escolha dos invariantes encontrados na literatura. Se as direções não são ortogonais, descobrimos que o número mínimo também é sete e corrigimos um erro em fórmula encontrada na literatura. Uma densidade de energia deste tipo é usada para modelar, na escala macroscópica, materiais de engenharia, tais como compósitos reforçados com fibras, e tecidos biológicos, tais como ossos. / We determine the minimum number of independent invariants that are needed to characterize completely the strain energy density of a hyperelastic solid having two distinct material symmetry directions. We use a theory of representation of isotropic functions to express this energy density in terms of eighteen invariants and extract a set of ten invariants to analyze two cases of material symmetry. In the case of orthogonal directions, we recover the classical result of seven invariants and offer a justification for the choice of invariants found in the literature. If the directions are not orthogonal, we find that the minimum number is also seven and correct a mistake in a formula found in the literature. An energy density of this type is used to model, on the macroscopic scale, engineering materials, such as fiber-reinforced composites, and biological tissues, such as bones.
2

Aplicação da teoria de representação de funções isotrópicas em sólidos hiperelásticos com duas direções de simetria material / Application of the theory of isotropic function representation in hyperelastic solids with two materials symmetry directions

Gabriel Lopes da Rocha 09 August 2017 (has links)
Aplicamos a teoria de representação de funções isotrópicas para determinar o número mínimo de invariantes independentes necessários para caracterizar completamente a densidade de energia de deformação de sólido hiperelástico com duas direções de simetria material. Expressamos a densidade de energia em termos de dezoito invariantes e extraímos um conjunto de dez invariantes para analisar dois casos de simetria material. No caso de direções ortogonais, recuperamos o resultado clássico de sete invariantes e oferecemos uma justificativa para a escolha dos invariantes encontrados na literatura. Se as direções não são ortogonais, descobrimos que o número mínimo também é sete e corrigimos um erro em fórmula encontrada na literatura. Uma densidade de energia deste tipo é usada para modelar, na escala macroscópica, materiais de engenharia, tais como compósitos reforçados com fibras, e tecidos biológicos, tais como ossos. / We determine the minimum number of independent invariants that are needed to characterize completely the strain energy density of a hyperelastic solid having two distinct material symmetry directions. We use a theory of representation of isotropic functions to express this energy density in terms of eighteen invariants and extract a set of ten invariants to analyze two cases of material symmetry. In the case of orthogonal directions, we recover the classical result of seven invariants and offer a justification for the choice of invariants found in the literature. If the directions are not orthogonal, we find that the minimum number is also seven and correct a mistake in a formula found in the literature. An energy density of this type is used to model, on the macroscopic scale, engineering materials, such as fiber-reinforced composites, and biological tissues, such as bones.

Page generated in 0.0794 seconds