• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Miocene-Pliocene carbonate platforms, southern Southwest Palawan Basin, Philippines

Sta. Ana, Ma. Corazon Victor 02 June 2009 (has links)
Isolated carbonate platforms and buildups of the Likas Formation provide a long record of carbonate sedimentation in the southern end of the Southwest Palawan Basin. While most carbonate platforms terminated in early Miocene and middle Miocene time in northern parts of western offshore Palawan (i.e. Northwest Palawan Basin and central South Palawan), carbonate deposition began later in the south during late middle Miocene time. Carbonate platforms of the Likas Formation developed in the Paragua sub-basin, which is interpreted to be a depozone eastward of the Palawan accretionary wedge in the structurally complex Southwest Palawan Basin. A regional 2D seismic grid and borehole data from four wells were used to analyze the growth patterns of the carbonate platforms, identify seismic facies, and reconstruct the evolution of the platforms. The carbonate platforms developed on the folded and faulted middle to premiddle Miocene siliciclastic strata. These older siliciclastic units were thrusted onto the southern end of the North Palawan microcontinental fragment, which represents a block of continental crust that drifted southward from South China during early Tertiary time. The platforms aggraded over time and backstepped to keep pace with increasing rates of relative sea level rise. Karst features are recognizable on seismic sections and indicate that the platforms were subaerially exposed at various times during their development. The platforms exhibit variable morphology from faulting and tilting. The platforms terminated in early Pliocene time, as relative sea level continued to rise, and were buried by deep-marine siliciclastic units.
2

Evolution of a Miocene-Pliocene Low-Angle Normal-Fault System in the Southern Bannock Range, Southeast Idaho

Carney, Stephanie M. 01 May 2002 (has links)
Geologic mapping, basin analysis, and tephrochronologic analysis in the Clifton quadrangle of southeast Idaho indicates that the modern Basin-and-Range topography is only a few million years old and that the bulk of Cenozoic extension was accommodated by slip on an older low-angle normal-fault system, the Bannock detachment system. The detachment system was active between ~12 and < 4 Ma and accommodated ~50 % extension. Cross-cutting relationships show that the master detachment fault, the Clifton fault, is the youngest low-angle normal fault of the system, was active at a low angle, and has not been rotated to a low-dip angle through time. Map patterns and relationships indicate that the hanging wall to the detachment system began as a cohesive block that later broke up along listric and planar normal faults that either sole into or are cut by the master detachment fault. The Miocene-Pliocene Salt Lake Formation, a syntectonic, basin-fill deposit of the Bannock detachment system, was deposited during three sub-episodes of extension on the detachment system. Depositional systems within the Salt Lake Formation evolved from saline/alkaline lakes to fresh water lakes and streams to braided streams in response to the changing structural configuration of rift basins in the hanging wall of the detachment system. After breakup of the hanging wall began, the master detachment fault excised part of the hanging wall and cut hanging-wall deposits and structures. The structural geometry of the Bannock detachment system strongly resembles that of detachments documented in metamorphic core complexes. Therefore, we interpret the Bannock detachment system as a proto-metamorphic core complex, akin to the Sevier Desert detachment fault. The Bannock detachment system also collapsed the Cache-Pocatello culmination of the dormant Sevier fold-and-thrust belt, much like the Sevier Desert detachment collapsed the Sevier culmination. Structures of the Bannock detachment system are overprinted by a second episode of extension accommodated by E- and NE-trending normal faults that may be related to subsidence along the Yellowstone hotspot track and a third episode of extension accommodated by high-angle, Basin-and-Range normal faults. This last episode of extension began no earlier than 4-5 Ma and continues today.

Page generated in 0.0444 seconds