• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unsupervised learning with mixed type data : for detecting money laundering / Klusteranalys av heterogen data

Engardt, Sara January 2018 (has links)
The purpose of this master's thesis is to perform a cluster analysis on parts of Handelsbanken's customer database. The ambition is to explore if this could be of aid in identifying type customers within risk of illegal activities such as money laundering. A literature study is conducted to help determine which of the clustering methods described in the literature are most suitable for the current problem. The most important constraints of the problem are that the data consists of mixed type attributes (categorical and numerical) and the large presence of outliers in the data. An extension to the self-organising map as well as the k-prototypes algorithms were chosen for the clustering. It is concluded that clusters exist in the data, however in the presence of outliers. More work is needed on handling missing values in the dataset. / Syftet med denna masteruppsats är att utföra en klusteranalys på delar av Handelsbankens kunddatabas. Tanken är att undersöka ifall detta kan vara till hjälp i att identifiera typkunder inom olagliga aktiviteter såsom penningtvätt. Först genomförs en litteraturstudie för att undersöka vilken algoritm som är bäst lämpad för att lösa problemet. Kunddatabasen består av data med både numeriska och kategoriska attribut. Ett utökat Kohonen-nätverk (eng: self-organising map) samt k-prototyp algoritmen används för klustringen. Resultaten visar att det finns kluster i datat, men i närvaro av brus. Mer arbete behöver göras för att hantera tomma värden bland attributen.
2

Estimating Veterans' Health Benefit Grants Using the Generalized Linear Mixed Cluster-Weighted Model with Incomplete Data

Deng, Xiaoying January 2018 (has links)
The poverty rate among veterans in US has increased over the past decade, according to the U.S. Department of Veterans Affairs (2015). Thus, it is crucial to veterans who live below the poverty level to get sufficient benefit grants. A study on prudently managing health benefit grants for veterans may be helpful for government and policy-makers making appropriate decisions and investments. The purpose of this research is to find an underlying group structure for the veterans' benefit grants dataset and then estimate veterans' benefit grants sought using incomplete data. The generalized linear mixed cluster-weighted model based on mixture models is carried out by grouping similar observations to the same cluster. Finally, the estimates of veterans' benefit grants sought will provide reference for future public policies. / Thesis / Master of Science (MSc)

Page generated in 0.066 seconds