• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-Performance Optoelectronics Based on Mixed-Dimensional Organolead Halide Perovskites

Ma, Chun 01 April 2020 (has links)
Halide perovskites have some unique advantages as optoelectronic materials. Metal halide perovskites have been attracting enormous attention for applications in optoelectronic devices such as photodetectors, light-emitting devices and field-effect transistors. The remarkable semiconducting properties have been intensively investigated in recent years. However, the performance of optoelectronics devices based on the conventional perovskite is limited by the ion migration, the mobility of the carriers and the light absorption in the near infrared region and so on. In a decade, numerous attempts are studied to further breakthrough the limitations using both physical and chemical methods. This dissertation is devoted to overcoming the drawbacks by integrating the state-of-art perovskite with other functional materials and to further deciphering the carrier transport mechanics behind the mixed dimensional heterostructures. Field-effect transistors are the workhorse of modern microelectronics. Proof-of-concept devices have been made, utilizing solution-processed perovskite as transistors. Beyond the Field-effect transistors, photodetectors can be construct with a transistor configuration. In this dissertation, we exploited Au dimers with structural darkness to enhance the light harvesting, and utilize sorted semiconducting single-walled carbon nanotubes to enhance the conductivity of thin-film. At last, we developed a hybrid memtransistor, modulable by multiple physical inputs using hybrid perovskite and conjugated polymer heterojunction channels to realize neuromorphic computing.

Page generated in 0.0967 seconds