• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 22
  • 19
  • 15
  • 7
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 237
  • 237
  • 90
  • 45
  • 44
  • 37
  • 31
  • 30
  • 27
  • 26
  • 25
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Degradation Analysis for Heterogeneous Data Using Mixture Model

Ji, Yizhen 13 June 2013 (has links)
No description available.
82

Use of Roadway Attributes in Hot Spot Identification and Analysis

Bassett, David R. 01 July 2015 (has links) (PDF)
The Utah Department of Transportation (UDOT) Traffic and Safety Division continues to advance the safety of roadway sections throughout the state. In an effort to aid UDOT in meeting their goal, the Department of Civil and Environmental Engineering at Brigham Young University (BYU) has worked with the Statistics Department in developing analysis tools for safety. The most recent of these tools has been the development of a hierarchical Bayesian Poisson Mixture Model (PMM) of traffic crashes known as the Utah Crash Prediction Model (UCPM), a hierarchical Bayesian Binomial statistical model known as the Utah Crash Severity Model (UCSM), and a Bayesian Horseshoe selection method. The UCPM and UCSM models helped with the analysis of safety on UDOT roadways statewide and the integration of the results of these models was applied to Geographic Information System (GIS) framework. This research focuses on the addition of roadway attributes in the selection and analysis of “hot spots.” This is in conjunction with the framework for highway safety mitigation migration in Utah with its six primary steps: network screening, diagnosis, countermeasure selection, economic appraisal, project prioritization, and effectiveness evaluation. The addition of roadway attributes was included as part of the network screening, diagnosis, and countermeasure selection, which are included in the methodology titled “Hot Spot Identification and Analysis.” Included in this research was the documentation of the steps and process for data preparation and model use for the step of network screening and the creation of one of the report forms for the steps of diagnosis and countermeasure selection. The addition of roadway attributes is required at numerous points in the process. Methods were developed to locate and evaluate the usefulness of available data. Procedures and systemization were created to convert raw data into new roadway attributes, such as grade and sag/crest curve location. For the roadway attributes to be useful in selection and analysis, methods were developed to combine and associate the attributes to crashes on problem segments and problem spots. The methodology for “Hot Spot Identification and Analysis” was enhanced to include steps for the inclusion and defining of the roadway attributes. These methods and procedures were used to help in the identification of safety hot spots so that they can be analyzed and countermeasures selected. Examples of how the methods are to function are given with sites from Utah’s state roadway network.
83

Correction Methods, Approximate Biases, and Inference for Misclassified Data

Shieh, Meng-Shiou 01 May 2009 (has links)
When categorical data are misplaced into the wrong category, we say the data is affected by misclassification. This is common for data collection. It is well-known that naive estimators of category probabilities and coefficients for regression that ignore misclassification can be biased. In this dissertation, we develop methods to provide improved estimators and confidence intervals for a proportion when only a misclassified proxy is observed, and provide improved estimators and confidence intervals for regression coefficients when only misclassified covariates are observed. Following the introduction and literature review, we develop two estimators for a proportion , one which reduces the bias, and one with smaller mean square error. Then we will give two methods to find a confidence interval for a proportion, one using optimization techniques, and the other one using Fieller's method. After that, we will focus on developing methods to find corrected estimators for coefficients of regression with misclassified covariates, with or without perfectly measured covariates, and with a known estimated misclassification/reclassification model. These correction methods use the score function approach, regression calibration and a mixture model. We also use Fieller's method to find a confidence interval for the slope of simple regression with misclassified binary covariates. Finally, we use simulation to demonstrate the performance of our proposed methods.
84

Interactive Imaging via Hand Gesture Recognition.

Jia, Jia January 2009 (has links)
With the growth of computer power, Digital Image Processing plays a more and more important role in the modern world, including the field of industry, medical, communications, spaceflight technology etc. As a sub-field, Interactive Image Processing emphasizes particularly on the communications between machine and human. The basic flowchart is definition of object, analysis and training phase, recognition and feedback. Generally speaking, the core issue is how we define the interesting object and track them more accurately in order to complete the interaction process successfully. This thesis proposes a novel dynamic simulation scheme for interactive image processing. The work consists of two main parts: Hand Motion Detection and Hand Gesture recognition. Within a hand motion detection processing, movement of hand will be identified and extracted. In a specific detection period, the current image is compared with the previous image in order to generate the difference between them. If the generated difference exceeds predefined threshold alarm, a typical hand motion movement is detected. Furthermore, in some particular situations, changes of hand gesture are also desired to be detected and classified. This task requires features extraction and feature comparison among each type of gestures. The essentials of hand gesture are including some low level features such as color, shape etc. Another important feature is orientation histogram. Each type of hand gestures has its particular representation in the domain of orientation histogram. Because Gaussian Mixture Model has great advantages to represent the object with essential feature elements and the Expectation-Maximization is the efficient procedure to compute the maximum likelihood between testing images and predefined standard sample of each different gesture, the comparability between testing image and samples of each type of gestures will be estimated by Expectation-Maximization algorithm in Gaussian Mixture Model. The performance of this approach in experiments shows the proposed method works well and accurately.
85

Discrete processing in visual perception

Green, Marshall L 10 December 2021 (has links) (PDF)
Two very different classes of theoretical models have been proposed to explain visual perception. One class of models assume that there is a point at which we become consciously aware of a stimulus, known as a threshold. This threshold is the foundation of discrete process models all of which describe an all-or-none transition between the mental state of perceiving a stimulus and the state of not perceiving a stimulus. In contrast, the other class of models assume that mental states change continuously. These continuous models are founded in signal detection theory and the more contemporary models in Bayesian inference frameworks. The continuous model is the more widely accepted model of perception, and as such discrete process models were mostly discarded. Nonetheless, there has been a renewed debate on continuous versus discrete perception, and recent work has renewed the idea that perception can be all-or-none. In this dissertation, we developed an experimental platform and modeling framework to test whether visual perception exhibits measurable characteristics consistent with discrete perception. The results of this study revealed a selective influence of stimulus type on the way that a visual stimulus is processed. Moreover this selective influence implied perception can either be discrete or continuous depending on the underlying perceptual processing. These qualitative differences in the way perception occurs even for highly similar stimuli such as motion or orientation have crucial implications for models of perception, as well as our understanding of neurophysiology and conscious perception.
86

Hyperspectral Image Visualization Using Double And Multiple Layers

Cai, Shangshu 02 May 2009 (has links)
This dissertation develops new approaches for hyperspectral image visualization. Double and multiple layers are proposed to effectively convey the abundant information contained in the original high-dimensional data for practical decision-making support. The contributions of this dissertation are as follows. 1.Development of new visualization algorithms for hyperspectral imagery. Double-layer technique can display mixed pixel composition and global material distribution simultaneously. The pie-chart layer, taking advantage of the properties of non-negativity and sum-to-one abundances from linear mixture analysis of hyperspectral pixels, can be fully integrated with the background layer. Such a synergy enhances the presentation at both macro and micro scales. 2.Design of an effective visual exploration tool. The developed visualization techniques are implemented in a visualization system, which can automatically preprocess and visualize hyperspectral imagery. The interactive tool with a userriendly interface will enable viewers to display an image with any desired level of details. 3.Design of effective user studies to validate and improve visualization methods. The double-layer technique is evaluated by well designed user studies. The traditional approaches, including gray-scale side-by-side classification maps, color hard classification maps, and color soft classification maps, are compared with the proposed double-layer technique. The results of the user studies indicate that the double-layer algorithm provides the best performance in displaying mixed pixel composition in several aspects and that it has the competitive capability of displaying the global material distribution. Based on these results, a multi-layer algorithm is proposed to improve global information display.
87

RESPONSE INSTRUCTIONS AND FAKING ON SITUATIONAL JUDGMENT TESTS

Broadfoot, Alison A. 20 October 2006 (has links)
No description available.
88

Examining Random-Coeffcient Pattern-Mixture Models forLongitudinal Data with Informative Dropout

Bishop, Brenden 07 December 2017 (has links)
No description available.
89

Bayesian Nonparametric Reliability Analysis Using Dirichlet Process Mixture Model

Cheng, Nan 03 October 2011 (has links)
No description available.
90

Statistical Inferences under a semiparametric finite mixture model

Zhang, Shiju January 2005 (has links)
No description available.

Page generated in 0.0502 seconds