• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trasování pohybu objektů s pomocí počítačového vidění / Object tracking using computer vision

Klapal, Matěj January 2017 (has links)
This diploma thesis deals with posibilities of tracking object movement using computer vision algorithms. First chapters contain review of methods used for background subtraction, there are also listed basic detection approaches and thesis also mentions algorithms which allows tracking and movement prediction. Next part of this work informs about algoritms implemented in resulting software and its graphical user interface. Evaluation and comparison of original and modified algorithms is stationed at the end of this text.
2

Multiple Hypothesis Tracking For Multiple Visual Targets

Turker, Burcu 01 April 2010 (has links) (PDF)
Visual target tracking problem consists of two topics: Obtaining targets from camera measurements and target tracking. Even though it has been studied for more than 30 years, there are still some problems not completely solved. Especially in the case of multiple targets, association of measurements to targets, creation of new targets and deletion of old ones are among those. What is more, it is very important to deal with the occlusion and crossing targets problems suitably. We believe that a slightly modified version of multiple hypothesis tracking can successfully deal with most of the aforementioned problems with sufficient success. Distance, track size, track color, gate size and track history are used as parameters to evaluate the hypotheses generated for measurement to track association problem whereas size and color are used as parameters for occlusion problem. The overall tracker has been fine tuned over some scenarios and it has been observed that it performs well over the testing scenarios as well. Furthermore the performance of the tracker is analyzed according to those parameters in both association and occlusion handling situations.
3

Multiple hypothesis tracking for multiple visual targets

Turker, Burcu 01 April 2010 (has links) (PDF)
Visual target tracking problem consists of two topics: Obtaining targets from camera measurements and target tracking. Even though it has been studied for more than 30 years, there are still some problems not completely solved. Especially in the case of multiple targets, association of measurements to targets, creation of new targets and deletion of old ones are among those. What is more, it is very important to deal with the occlusion and crossing targets problems suitably. We believe that a slightly modified version of multiple hypothesis tracking can successfully deal with most of the aforementioned problems with sufficient success. Distance, track size, track color, gate size and track history are used as parameters to evaluate the hypotheses generated for measurement to track association problem whereas size and color are used as parameters for occlusion problem. The overall tracker has been fine tuned over some scenarios and it has been observed that it performs well over the testing scenarios as well. Furthermore the performance of the tracker is analyzed according to those parameters in both association and occlusion handling situations.
4

Ensemble registration : combining groupwise registration and segmentation

Purwani, Sri January 2016 (has links)
Registration of a group of images generally only gives a pointwise, dense correspondence defined over the whole image plane or volume, without having any specific description of any common structure that exists in every image. Furthermore, identifying tissue classes and structures that are significant across the group is often required for analysis, as well as the correspondence. The overall aim is instead to perform registration, segmentation, and modelling simultaneously, so that the registration can assist the segmentation, and vice versa. However, structural information does play a role in conventional registration, in that if the registration is successful, it would be expected structures to be aligned to some extent. Hence, we perform initial experiments to investigate whether there is explicit structural information present in the shape of the registration objective function about the optimum. We perturbed one image locally with a diffeomorphism, and found interesting structure in the shape of the quality of fit function. Then, we proceed to add explicit structural information into registration framework, using various types of structural information derived from the original intensity images. For the case of MR brain images, we augment each intensity image with its own set of tissue fraction images, plus intensity gradient images, which form an image ensemble for each example. Then, we perform groupwise registration by using these ensembles of images. We apply the method to four different real-world datasets, for which ground-truth annotation is available. It is shown that the method can give a greater than 25% improvement on the three difficult datasets, when compared to using intensity-based registration alone. On the easier dataset, it improves upon intensity-based registration, and achieves results comparable with the previous method.
5

Integration of Hidden Markov Modelling and Bayesian Network for Fault Detection and Prediction of Complex Engineered Systems

Soleimani, Morteza, Campean, Felician, Neagu, Daniel 07 June 2021 (has links)
yes / This paper presents a methodology for fault detection, fault prediction and fault isolation based on the integration of hidden Markov modelling (HMM) and Bayesian networks (BN). This addresses the nonlinear and non-Gaussian data characteristics to support fault detection and prediction, within an explainable hybrid framework that captures causality in the complex engineered system. The proposed methodology is based on the analysis of the pattern of similarity in the log-likelihood (LL) sequences against the training data for the mixture of Gaussians HMM (MoG-HMM). The BN model identifies the root cause of detected/predicted faults, using the information propagated from the HMM model as empirical evidence. The feasibility and effectiveness of the presented approach are discussed in conjunction with the application to a real-world case study of an automotive exhaust gas Aftertreatment system. The paper details the implementation of the methodology to this case study, with data available from real-world usage of the system. The results show that the proposed methodology identifies the fault faster and attributes the fault to the correct root cause. While the proposed methodology is illustrated with an automotive case study, its applicability is much wider to the fault detection and prediction problem of any similar complex engineered system.
6

A Comparative Evaluation Of Foreground / Background Segmentation Algorithms

Pakyurek, Muhammet 01 September 2012 (has links) (PDF)
A COMPARATIVE EVALUATION OF FOREGROUND / BACKGROUND SEGMENTATION ALGORITHMS Pakyurek, Muhammet M.Sc., Department of Electrical and Electronics Engineering Supervisor: Prof. Dr. G&ouml / zde Bozdagi Akar September 2012, 77 pages Foreground Background segmentation is a process which separates the stationary objects from the moving objects on the scene. It plays significant role in computer vision applications. In this study, several background foreground segmentation algorithms are analyzed by changing their critical parameters individually to see the sensitivity of the algorithms to some difficulties in background segmentation applications. These difficulties are illumination level, view angles of camera, noise level, and range of the objects. This study is mainly comprised of two parts. In the first part, some well-known algorithms based on pixel difference, probability, and codebook are explained and implemented by providing implementation details. The second part includes the evaluation of the performances of the algorithms which is based on the comparison v between the foreground background regions indicated by the algorithms and ground truth. Therefore, some metrics including precision, recall and f-measures are defined at first. Then, the data set videos having different scenarios are run for each algorithm to compare the performances. Finally, the performances of each algorithm along with optimal values of their parameters are given based on f measure.
7

Detekce lidské postavy v obrazové scéně / Human body detection in a video scene

Šmirg, Ondřej January 2008 (has links)
The project consists of two distinct levels i.e. separation level and diagnostic level. At the separation level, statistical models of gaussians and color are separately used to classify each pixel as belonging to backgroung or foreground. Adopted method is mixture of gaussians.A mixture of gaussians model is suitable here because the results of the picture tests will not depend on the lens opening, but rather on the colors in the backgroung. A mixture of gaussians model for return data seems reasonable. The achieved results the used method on the real sequences are presented in the thesis. Diagnostic level is identified human body on the scene. Adopted method is ASM(Active Shape Models) with PCA(Principal Component Analysis). ASM are statistical models of the shape of human bodies which iteratively deform to fit to an example of the object in a new image.
8

Detekce aut přijíždějících ke křižovatce / Detection of the Cars Approaching the Crossroad

Hopjan, Tomáš January 2013 (has links)
This project deals with monitoring cars approaching the crossroads. Describes various methods of detection and discussing their problems. Primary goal is surveillance during the day in different weather conditions, but method of detection cars during the night and low light is also introduced. The most widely used algorithms are implemented using the OpenCV library. Important part is testing different algorithms and also variety of lighting conditions, camera locations and settings.
9

Estimating the Market Risk Exposure through a Factor Model with Random Effects

Börjesson, Lukas January 2022 (has links)
In this thesis, we set out to model the market risk exposure for 251 stocks in the S&P 500 index, during a ten-year period between 2011-04-30 and 2021-03-31. The study brings to light a model not often mentioned in the scientific literature focused on market risk estimation, the linear mixed model. The linear mixed model makes it possible to model a time-varying market risk, as well as adding structure to the idiosyncratic risk, which is often assumed to be a stationary process. The results show that the mixed model is able to produce more accurate estimates for the market risk, compared to the baseline, which is here defined as a CAPM model. The success of the mixed model, which we in the study will refer to as the ADAPT model (adaptive APT), most certainly lies in its ability to create a hierarchical regression model. This makes it possible to not just view the set of observations as a single population, but let us group the observations into different clusters and in such a way makes it possible to construct a time-varying exposure. In the last part of the thesis, we highlight possible improvements for future works, which could make the estimation even more accurate and also more efficient.
10

Reconhecimento de gestos usando segmentação de imagens dinâmicas de mãos baseada no modelo de mistura de gaussianas e cor de pele / Gesture recognizing using segmentation of dynamic hand image based on the mixture of Gaussians model and skin color

Hebert Luchetti Ribeiro 01 September 2006 (has links)
O objetivo deste trabalho é criar uma metodologia capaz de reconhecer gestos de mãos, a partir de imagens dinâmicas, para interagir com sistemas. Após a captação da imagem, a segmentação ocorre nos pixels pertencentes às mãos que são separados do fundo pela segmentação pela subtração do fundo e filtragem de cor de pele. O algoritmo de reconhecimento é baseado somente em contornos, possibilitando velocidade para se trabalhar em tempo real. A maior área da imagem segmentada é considerada como região da mão. As regiões detectadas são analisadas para determinar a posição e a orientação da mão. A posição e outros atributos das mãos são rastreados quadro a quadro para distinguir um movimento da mão em relação ao fundo e de outros objetos em movimento, e para extrair a informação do movimento para o reconhecimento de gestos. Baseado na posição coletada, movimento e indícios de postura são calculados para reconhecimento um gesto significativo. / The purpose of this paper is to develop a methodology able to recognize hand gestures from dynamic images to interact with systems. After the image capture segmentation takes place where pixels belonging to the hands are separated from the background based on skin-color segmentation and background extraction. The image preprocessing can be applied before the edge detection. The recognition algorithm uses edges only; therefore it is quick enough for real time. The largest blob from the segmented image will be considered as the hand region. The detected regions are analyzed to determine position and orientation of the hand for each frame. The position and other attributes of the hands are tracked per frame to distinguish a movement from the hand in relation to the background and from other objects in movement, and to extract the information of the movement for the recognition of dynamic gestures. Based in the collected position, movement and indications of position are calculated to recognize a significant gesture.

Page generated in 0.0913 seconds