• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wireless Location Tracking Algorithms based on GDOP in the Mobile Environment

Kuo, Ting-Fu 31 August 2011 (has links)
The thesis is to explore wireless location tracking algorithms based on geometric dilution of precision (GDOP) in the mobile environment. The GDOP can be used as an indication of positioning accuracy, affected by the geometric relationship between the target and sensing units. The smaller the GDOP is, the better positioning accuracy. By using the information of sensing units and time difference of arrival (TDOA) positioning method, we use extended Kalman filter as an estimator to track and predict the state of a moving target. From previous research, the lowest GDOP value, located at the center of a regular polygon, represents the best positioning accuracy in 2-D scenario with numerous sensing units. It is important to find the best locations for the sensing units. Simulated annealing algorithm was used in previous studies. However, it only finds a location at a time, and consumes computation load and time. Due to the above-mentioned reasons, we propose a location tracking system, which consists of a base traiver station and numerous mobile sensing units. By using the information of a base transceiver station and the predicted position of target, we can obtain the best locations for all the mobile sensing units with the calculation of rotation matrix. The locations can also be used as beacons for relocating mobile sensing units. It may take many cycles to move mobile sensing units to the best locations. We have to perform path planning for mobile sensing units. Due to the location change of the moving target, the routes need adjustment accordingly. If the predicted stay of a mobile sensing unit is inside the obstacle, we adjust the route of the mobile sensing unit to make it stay out of the obstacle. Therefore, we also propose a path planning scheme for mobile sensing units to avoid obstacles. Through simulations, the proposed method decreases the tracking time effectively, and find the best locations precisely. When mobile sensing units move toward the best locations, they successfully avoid obstacles and move toward the position with the minimum GDOP. Through the course, good positioning accuracy can be maintained.

Page generated in 0.0906 seconds