• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

QoS Provisioning in Mobile Wireless Networks with Improved Handover and Service Migration

Shieh, Chin-shiuh 04 February 2009 (has links)
With increased popularity and pervasiveness, mobile networking had become a definite trend for future networks. Users strongly demand the retaining of the connectivity and the QoS (Quality of Service) of ongoing services while roaming across different points of attachment. Efficient handover schemes and service paradigms are essential to the above vision. We will contribute to the QoS provisioning in mobile wireless networks from two complementary perspectives: one is the improved handover schemes at the client end for shorter latency and less packet loss, and the other is the service migration at server end for improved QoS. There are time-consuming procedures involved in the handover process. Various research works had devoted to the acceleration of movement detection and registration. However, a time-consuming operation, duplicate address detection, was overlooked by most studies. A novel scheme featuring anycast / multicast technique is developed and presented in this dissertation. The proposed approach switches to anycast / multicast addressing during handover and switches back to normal unicast addressing after all required operations are completed. By switching to anycast / multicast addressing, a mobile node can continue the reception of packets from its corresponding node before its new care-of address is actually validated. As a result, transmission disruption can be effectively minimized. In addition, simple but effective buffer control schemes are designed to reduce possible packet loss and to prevent the out-of-order problem. Analytical study reveals that improved performance can be guaranteed, as reflected in the simulation results. The establishment of mobility-supported Internet protocols, such as IPv4 and IPv6, had made it possible that an ongoing service can be retained while a mobile node is roaming across different access domains. However, limited efforts had been paid to server sides if we consider the topological change due to node mobility. In the global network environment, the weighted network distance between a client and its server could change dramatically for reasons of topology change or node mobility. A new network service framework highlighting the concept of service migration is presented in this dissertation. The proposed framework take into account essential service quality factors, such as server loading, bandwidth, delay, and so on, and then dynamically migrates an ongoing service from a distant server to a new server with shorter ¡§weighted network distance¡¨ to the client. As a result, the individual service connection, as well as the global network environment, will benefit from the service migration, in terms of improved service quality and bandwidth utilization. This dissertation explains the general architecture of the proposed framework and focuses on the technical details of the core component - service migration module. Our experiences on the functional prototypes for service migration are also reported. The success of the prototyping system is an indication of the feasibility and effectiveness of the proposed scheme.
2

Extensions for Multicast in Mobile Ad-hoc Networks (XMMAN): The Reduction of Data Overhead in Wireless Multicast Trees

Christman, Michael Edward 22 August 2002 (has links)
Mobile Ad hoc Network (MANET) routing protocols are designed to provide connectivity between wireless mobile nodes that do not have access to high-speed backbone networks. While many unicast MANET protocols have been explored, research involving multicast protocols has been limited. Existing multicast algorithms attempt to reduce routing overhead, but few, if any, attempt to reduce data overhead. The broadcast nature of wireless communication creates a unique environment in which overlaps in coverage are common. When designed properly, a multicast algorithm can take advantage of these overlaps and reduce data overhead. Unlike a unicast route, in which there is one path between a sender and receiver, a multicast tree can have multiple branches between the sender and its multiple receivers. Some of these paths can be combined to reduce redundant data rebroadcasts. The extensions presented in this thesis are a combination of existing and original routing techniques that were designed to reduce data rebroadcasts by aggregating multicast data flows. One such optimization takes advantage of the multipoint relay (MPR) nodes used by the Optimized Link State Routing (OLSR) unicast protocol. These nodes are used in unicast routing to reduce network broadcast, but can be used to help create efficient multicast data flows. Additionally, by listening to routing messages meant for other nodes, a host can learn a bit about its network and may be able to make routing changes that improve the multicast tree. This protocol was implemented as a software router in Linux. It should be emphasized that this is a real implementation and not a simulation. Experiments showed that the number of data packets in the network could be reduced by as much as 19 percent. These improvements were accomplished while using only a small amount of routing overhead. / Master of Science
3

Networking And Security Solutions For Vanet Initial Deployment Stage

Aslam, Baber 01 January 2012 (has links)
Vehicular ad hoc network (VANET) is a special case of mobile networks, where vehicles equipped with computing/communicating devices (called "smart vehicles") are the mobile wireless nodes. However, the movement pattern of these mobile wireless nodes is no more random, as in case of mobile networks, rather it is restricted to roads and streets. Vehicular networks have hybrid architecture; it is a combination of both infrastructure and infrastructure-less architectures. The direct vehicle to vehicle (V2V) communication is infrastructure-less or ad hoc in nature. Here the vehicles traveling within communication range of each other form an ad hoc network. On the other hand, the vehicle to infrastructure (V2I) communication has infrastructure architecture where vehicles connect to access points deployed along roads. These access points are known as road side units (RSUs) and vehicles communicate with other vehicles/wired nodes through these RSUs. To provide various services to vehicles, RSUs are generally connected to each other and to the Internet. The direct RSU to RSU communication is also referred as I2I communication. The success of VANET depends on the existence of pervasive roadside infrastructure and sufficient number of smart vehicles. Most VANET applications and services are based on either one or both of these requirements. A fully matured VANET will have pervasive roadside network and enough vehicle density to enable VANET applications. However, the initial deployment stage of VANET will be characterized by the lack of pervasive roadside infrastructure and low market penetration of smart vehicles. It will be economically infeasible to initially install a pervasive and fully networked iv roadside infrastructure, which could result in the failure of applications and services that depend on V2I or I2I communications. Further, low market penetration means there are insufficient number of smart vehicles to enable V2V communication, which could result in failure of services and applications that depend on V2V communications. Non-availability of pervasive connectivity to certification authorities and dynamic locations of each vehicle will make it difficult and expensive to implement security solutions that are based on some central certificate management authority. Nonavailability of pervasive connectivity will also affect the backend connectivity of vehicles to the Internet or the rest of the world. Due to economic considerations, the installation of roadside infrastructure will take a long time and will be incremental thus resulting in a heterogeneous infrastructure with non-consistent capabilities. Similarly, smart vehicles will also have varying degree of capabilities. This will result in failure of applications and services that have very strict requirements on V2I or V2V communications. We have proposed several solutions to overcome the challenges described above that will be faced during the initial deployment stage of VANET. Specifically, we have proposed:  A VANET architecture that can provide services with limited number of heterogeneous roadside units and smart vehicles with varying capabilities.  A backend connectivity solution that provides connectivity between the Internet and smart vehicles without requiring pervasive roadside infrastructure or large number of smart vehicles.  A security architecture that does not depend on pervasive roadside infrastructure or a fully connected V2V network and fulfills all the security requirements. v  Optimization solutions for placement of a limited number of RSUs within a given area to provide best possible service to smart vehicles. The optimal placement solutions cover both urban areas and highways environments

Page generated in 0.0804 seconds