1 |
Periodic models and variations applied to health problems / Modèles périodiques et variations appliqués aux problèmes de santéPrezotti Filho, Paulo Roberto 26 February 2019 (has links)
Ce manuscrit porte sur certaines extensions à des séries temporelles prenant des valeurs entières du modèle paramétrique périodique autorégressif établi pour des séries prenant des valeurs réelles. Les modèles que nous considérons sont basés sur l'utilisation de l'opérateur de Steutel et Van Harn (1979) et généralisent le processus autorégressif stationnaire à valeurs entières (INAR) introduit par Al-Osh & Alzaid (1987) à des séries de comptage périodiquement corrélées. Ces généralisations incluent l'introduction d'un opérateur périodique, la prise en compte d'une structure d’autocorrélation plus complexe dont l’ordre est supérieur à un, l'apparition d'innovations de variances périodiques mais aussi à inflation de zéro par rapport à une loi discrète donnée dans la famille des distributions exponentielles, ainsi que l’utilisation de covariables explicatives. Ces extensions enrichissent considérablement le domaine d'applicabilité des modèles de type INAR. Sur le plan théorique, nous établissons des propriétés mathématiques de nos modèles telles que l'existence, l'unicité, la stationnarité périodique de solutions aux équations définissant les modèles. Nous proposons trois méthodes d'estimation des paramètres des modèles dont une méthode des moments basée sur des équations du type Yule-Walker, une méthode des moindres carrés conditionnels, et une méthode du quasi maximum de vraisemblance (QML) basée sur la maximisation d'une vraisemblance gaussienne. Nous établissons la consistance et la normalité asymptotique de ces procédures d'estimation. Des simulations de type Monte Carlo illustrent leur comportement pour différentes tailles finies d'échantillon. Les modèles sont ensuite ajustés à des données réelles et utilisés à des fins de prédiction. La première extension du modèle INAR que nous proposons consiste à introduire deux opérateurs de Steutel et Van Harn périodiques, l'un modélisant les autocorrélations partielles d'ordre un sur chaque période et l'autre captant la saisonnalité périodique des données. Grâce à une représentation vectorielle du processus, nous établissons les conditions l'existence et d'unicité d'une solution périodiquement corrélées aux équations définissant le modèle. Dans le cas où les innovations suivent des lois de Poisson, nous étudions la loi marginale du processus. Á titre d'exemple d'application sur des données réelles, nous ajustons ce modèle à des données de comptage journalières du nombre de personnes ayant reçu des antibiotiques pour le traitement de maladies respiratoires dans la région de Vitória au Brésil. Comme les affections respiratoires sont fortement corrélées au niveau de pollution atmosphérique et aux conditions climatiques, la structure de corrélation des nombres quotidiens de personnes recevant des antibiotiques montre, entre autres caractéristiques, une périodicité et un caractère saisonnier hebdomadaire. Nous étendons ensuite ce modèle à des données présentant des autocorrélations partielles périodiques d'ordre supérieur à un. Nous étudions les propriétés statistiques du modèle, telles que la moyenne, la variance, les distributions marginales et jointes. Nous ajustons ce modèle au nombre quotidien de personnes recevant du service d'urgence de l'hôpital public de Vitória un traitement pour l'asthme. Enfin, notre dernière extension porte sur l'introduction d'innovations suivant une loi de Poisson à inflation de zéro dont les paramètres varient périodiquement, et sur l’ajout de covariables expliquant le logarithme de l'intensité de la loi de Poisson. Nous établissons certaines propriétés statistiques du modèle et nous mettons en oeuvre la méthode du QML pour estimer ses paramètres. Enfin, nous appliquons cette modélisation à des données journalières du nombre de personnes qui se sont rendues dans le service d'urgence d'un hôpital pour des problèmes respiratoires, et nous utilisons comme covariable la concentration de polluant dans la même zone géographique. / This manuscript deals with some extensions to time series taking integer values of the autoregressive periodic parametric model established for series taking real values. The models we consider are based on the use of the operator of Steutel and Van Harn (1979) and generalize the stationary integer autoregressive process (INAR) introduced by Al-Osh & Alzaid (1987) to periodically correlated counting series. These generalizations include the introduction of a periodic operator, the taking into account of a more complex autocorrelation structure whose order is higher than one, the appearance of innovations of periodic variances but also at zero inflation by relation to a discrete law given in the family of exponential distributions, as well as the use of explanatory covariates. These extensions greatly enrich the applicability domain of INAR type models. On the theoretical level, we establish mathematical properties of our models such as the existence, the uniqueness, the periodic stationarity of solutions to the equations defining the models. We propose different methods for estimating model parameters, including a method of moments based on Yule-Walker equations, a conditional least squares method, and a quasi-maximum likelihood method based on the maximization of a Gaussian likelihood. We establish the consistency and asymptotic normality of these estimation procedures. Monte Carlo simulations illustrate their behavior for different finite sample sizes. The models are then adjusted to real data and used for prediction purposes.The first extension of the INAR model that we propose consists of introducing two periodic operators of Steutel and Van Harn, one modeling the partial autocorrelations of order one on each period and the other capturing the periodic seasonality of the data. Through a vector representation of the process, we establish the conditions of existence and uniqueness of a solution periodically correlated to the equations defining the model. In the case where the innovations follow Poisson's laws, we study the marginal law of the process. As an example of real-world application, we are adjusting this model to daily count data on the number of people who received antibiotics for the treatment of respiratory diseases in the Vitória region in Brazil. Because respiratory conditions are strongly correlated with air pollution and weather, the correlation pattern of the daily numbers of people receiving antibiotics shows, among other characteristics, weekly periodicity and seasonality. We then extend this model to data with periodic partial autocorrelations of order higher than one. We study the statistical properties of the model, such as mean, variance, marginal and joined distributions. We are adjusting this model to the daily number of people receiving emergency service from the public hospital of the municipality of Vitória for treatment of asthma. Finally, our last extension deals with the introduction of innovations according to a Poisson law with zero inflation whose parameters vary periodically, and on the addition of covariates explaining the logarithm of the intensity of the Poisson's law. We establish some statistical properties of the model, and we use the conditional maximum likelihood method to estimate its parameters. Finally, we apply this modeling to daily data of the number of people who have visited a hospital's emergency department for respiratory problems, and we use the concentration of a pollutant in the same geographical area as a covariate. / Este manuscrito trata de algumas extensões para séries temporais de valores inteiros domodelo paramétrico periódico autorregressivo estabelecido séries temporais de valores reais. Osmodelos considerados baseiam-se no uso do operadorde Steutel e Van Harn (1979) e generalizamo processo autorregressivo depara números inteiros estacionários (INAR) introduzidos por Al-Osh & Alzaid(1987) para séries de contagem periodicamente correlacionadas. Essas generalizações incluem aintrodução de um operador periódico, a consideração de uma estrutura de autocorrelação mais complexa,cuja ordem é maior do que um, o aparecimentode inovações de variâncias periódicas, e também ainflação zero em relação a uma lei discreta dadana família de distribuições exponenciais, bem comoo uso de covariáveis explicativas. Essas extensões enriquecem muito o domínio de aplicabilidade dosmodelos do tipo INAR. No nível teórico, estabelecemospropriedades matemáticas de nossos modeloscomo a existência, a unicidade, e a estacionariedadeperiódica de soluções para as equações que definemos modelos. Propomos três métodos para estimarparâmetros de modelos, incluindo um métodode momentos baseado nas equações de Yule-Walker,um método de mínimos quadrados condicionais e ummétodo de quasi-máxima verossimilhança (QML) baseadona maximização de uma probabilidade Gaussiana. Estabelecemos a consistência e a normalidadeassintótica desses procedimentos de estimativa. Assimulações de Monte Carlo ilustram seus comportamentospara diferentes tamanhos de amostras finitas.Os modelos são então ajustados para dados reais eusados para fins de previsão. A primeira extensão domodelo INAR que propomos consiste na introdução de dois operadores periódicos de Steutel e VanHarn, o primeiro atua modelando as autocorrelações parciais de ordem um em cada período e o outro capturando a sazonalidade periódica dos dados.Através de uma representação vetorial do processo,estabelecemos as condições existência e unicidadede uma solução periodicamente correlacionada às equações que definem o modelo. No casoem que as inovações seguem as leis de Poisson,estudamos a lei marginal do processo. Como umexemplo de aplicação no mundo real, estamos ajustandoeste modelo aos dados diários de contagemdo número de pessoas que receberam antibióticos para o tratamento de doenças respiratórias na região de Vitória, Brasil. Como as condições respiratórias estão fortemente correlacionadas com a poluição doar e o clima, o padrão de correlação dos números diários de pessoas que recebem antibióticos mostra,entre outras características, a periodicidade semanale a sazonalidade. Em seguida, estendemosesse modelo para dados com autocorrelações parciaisperiódicas de ordem maior que um. Estudamosas propriedades estatísticas do modelo, como média,variância, distribuições marginais e conjuntas. Ajustamosesse modelo ao número diário de pessoascom problema respiratório que receberam atendimentode emergência no pronto-atendimento da redepública do município de Vitória. Finalmente, nossa última extensão trata da introdução de inovações de acordo com uma lei de Poisson com inflação zero cujos parâmetros variam periodicamente, e daadição de covariáveis explicando o logaritmo da intensidadeda lei de Poisson. Estabelecemos algumaspropriedades estatísticas do modelo e usamoso método QML para estimar seus parâmetros. Porfim, aplicamos essa modelagem aos dados diários sobre o número de pessoas que visitaram o departamentode emergência de um hospital por problemasrespiratórios e usamos como covariável a sérieconcentrações diárias e um poluente medido namesma área geográfica.
|
2 |
Contribution à l'économétrie des séries temporelles à valeurs entières / Contribution to econometrics of time series with integer valuesAhmad, Ali 05 December 2016 (has links)
Dans cette thèse, nous étudions des modèles de moyennes conditionnelles de séries temporelles à valeurs entières. Tout d’abord, nous proposons l’estimateur de quasi maximum de vraisemblance de Poisson (EQMVP) pour les paramètres de la moyenne conditionnelle. Nous montrons que, sous des conditions générales de régularité, cet estimateur est consistant et asymptotiquement normal pour une grande classe de modèles. Étant donné que les paramètres de la moyenne conditionnelle de certains modèles sont positivement contraints, comme par exemple dans les modèles INAR (INteger-valued AutoRegressive) et les modèles INGARCH (INteger-valued Generalized AutoRegressive Conditional Heteroscedastic), nous étudions la distribution asymptotique de l’EQMVP lorsque le paramètre est sur le bord de l’espace des paramètres. En tenant compte de cette dernière situation, nous déduisons deux versions modifiées du test de Wald pour la significativité des paramètres et pour la moyenne conditionnelle constante. Par la suite, nous accordons une attention particulière au problème de validation des modèles des séries temporelles à valeurs entières en proposant un test portmanteau pour l’adéquation de l’ajustement. Nous dérivons la distribution jointe de l’EQMVP et des autocovariances résiduelles empiriques. Puis, nous déduisons la distribution asymptotique des autocovariances résiduelles estimées, et aussi la statistique du test. Enfin, nous proposons l’EQMVP pour estimer équation-par-équation (EpE) les paramètres de la moyenne conditionnelle des séries temporelles multivariées à valeurs entières. Nous présentons les hypothèses de régularité sous lesquelles l’EQMVP-EpE est consistant et asymptotiquement normal, et appliquons les résultats obtenus à plusieurs modèles des séries temporelles multivariées à valeurs entières. / The framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regularityconditions, this estimator is consistent and asymptotically normal for a wide classeof count time series models. Since the conditional mean parameters of some modelsare positively constrained, as, for example, in the integer-valued autoregressive (INAR) and in the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH), we study the asymptotic distribution of this estimator when the parameter lies at the boundary of the parameter space. We deduce a Waldtype test for the significance of the parameters and another Wald-type test for the constance of the conditional mean. Subsequently, we propose a robust and general goodness-of-fit test for the count time series models. We derive the joint distribution of the PQMLE and of the empirical residual autocovariances. Then, we deduce the asymptotic distribution of the estimated residual autocovariances and also of a portmanteau test. Finally, we propose the PQMLE for estimating, equation-by-equation (EbE), the conditional mean parameters of a multivariate time series of counts. By using slightly different assumptions from those given for PQMLE, we show the consistency and the asymptotic normality of this estimator for a considerable variety of multivariate count time series models.
|
Page generated in 0.4823 seconds