• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical methods for quantifying uncertainty in climate projections from ensembles of climate models

Sansom, Philip George January 2014 (has links)
Appropriate and defensible statistical frameworks are required in order to make credible inferences about future climate based on projections derived from multiple climate models. It is shown that a two-way analysis of variance framework can be used to estimate the response of the actual climate, if all the climate models in an ensemble simulate the same response. The maximum likelihood estimate of the expected response provides a set of weights for combining projections from multiple climate models. Statistical F tests are used to show that the differences between the climate response of the North Atlantic storm track simulated by a large ensemble of climate models cannot be distinguished from internal variability. When climate models simulate different responses, the differences between the re- sponses represent an additional source of uncertainty. Projections simulated by climate models that share common components cannot be considered independent. Ensemble thinning is advocated in order to obtain a subset of climate models whose outputs are judged to be exchangeable and can be modelled as a random sample. It is shown that the agreement between models on the climate response in the North Atlantic storm track is overestimated due to model dependence. Correlations between the climate responses and historical climates simulated by cli- mate models can be used to constrain projections of future climate. It is shown that the estimate of any such emergent relationship will be biased, if internal variability is large compared to the model uncertainty about the historical climate. A Bayesian hierarchical framework is proposed that is able to separate model uncertainty from internal variability, and to estimate emergent constraints without bias. Conditional cross-validation is used to show that an apparent emergent relationship in the North Atlantic storm track is not robust. The uncertain relationship between an ensemble of climate models and the actual climate can be represented by a random discrepancy. It is shown that identical inferences are obtained whether the climate models are treated as predictors for the actual climate or vice versa, provided that the discrepancy is assumed to be sym- metric. Emergent relationships are reinterpreted as constraints on the discrepancy between the expected response of the ensemble and the actual climate response, onditional on observations of the recent climate. A simple method is proposed for estimating observation uncertainty from reanalysis data. It is estimated that natural variability accounts for 30-45% of the spread in projections of the climate response in the North Atlantic storm track.
2

Ensemble classification and signal image processing for genus Gyrodactylus (Monogenea)

Ali, Rozniza January 2014 (has links)
This thesis presents an investigation into Gyrodactylus species recognition, making use of machine learning classification and feature selection techniques, and explores image feature extraction to demonstrate proof of concept for an envisaged rapid, consistent and secure initial identification of pathogens by field workers and non-expert users. The design of the proposed cognitively inspired framework is able to provide confident discrimination recognition from its non-pathogenic congeners, which is sought in order to assist diagnostics during periods of a suspected outbreak. Accurate identification of pathogens is a key to their control in an aquaculture context and the monogenean worm genus Gyrodactylus provides an ideal test-bed for the selected techniques. In the proposed algorithm, the concept of classification using a single model is extended to include more than one model. In classifying multiple species of Gyrodactylus, experiments using 557 specimens of nine different species, two classifiers and three feature sets were performed. To combine these models, an ensemble based majority voting approach has been adopted. Experimental results with a database of Gyrodactylus species show the superior performance of the ensemble system. Comparison with single classification approaches indicates that the proposed framework produces a marked improvement in classification performance. The second contribution of this thesis is the exploration of image processing techniques. Active Shape Model (ASM) and Complex Network methods are applied to images of the attachment hooks of several species of Gyrodactylus to classify each species according to their true species type. ASM is used to provide landmark points to segment the contour of the image, while the Complex Network model is used to extract the information from the contour of an image. The current system aims to confidently classify species, which is notifiable pathogen of Atlantic salmon, to their true class with high degree of accuracy. Finally, some concluding remarks are made along with proposal for future work.
3

Ensemble of models shows coherent response of a reservoir’s stratification and ice cover to climate warming

Feldbauer, Johannes, Ladwig, Robert, Mesman, Jorrit P., Moore, Tadhg N., Zündorf, Hilke, Berendonk, Thomas U., Petzoldt, Thomas 22 March 2024 (has links)
Water temperature, ice cover, and lake stratification are important physical properties of lakes and reservoirs that control mixing as well as bio-geo-chemical processes and thus influence the water quality. We used an ensemble of vertical onedimensional hydrodynamic lake models driven with regional climate projections to calculate water temperature, stratification, and ice cover under the A1B emission scenario for the German drinking water reservoir Lichtenberg. We used an analysis of variance method to estimate the contributions of the considered sources of uncertainty on the ensemble output. For all simulated variables, epistemic uncertainty, which is related to the model structure, is the dominant source throughout the simulation period. Nonetheless, the calculated trends are coherent among the five models and in line with historical observations. The ensemble predicts an increase in surface water temperature of 0.34 K per decade, a lengthening of the summer stratification of 3.2 days per decade, as well as decreased probabilities of the occurrence of ice cover and winter inverse stratification by 2100. These expected changes are likely to influence the water quality of the reservoir. Similar trends are to be expected in other reservoirs and lakes in comparable regions.

Page generated in 0.041 seconds