• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Black-Box Model Development of the JAS 39 Gripen Fuel Tank Pressurization System : Intended for a Model-Based Diagnosis System / Black-box-modellering av tanktrycksättning hos bränslesystemet i JAS 39 Gripen : Avsedd för ett modellbaserat diagnossystem

Kensing, Vibeke January 2002 (has links)
The objective with this thesis is to build a Black-Box model of the tank pressurization system in JAS 39 Gripen. This model is intended to be used in an existing diagnosis system for the security control in the tank pressurization system. The tank pressurization system is a MIMO system. This makes the identification process more complicated when the best model is to be chosen. In this master's thesis the identification procedure for a MIMO system can be followed. Testing of the diagnosis system with the created Black-Box model shows that the model seems to be good enough. The diagnosis system takes the right decisions in the performed simulations. This shows that system identification might be a good alternative to physical modelling for a real-time model. The disadvantage with the Black-Box model is that it is less accurate in steady-state than the physical model used before is. The advantage is that it is faster than the physical model. The diagnosis system and the model developed in this thesis are not directly applicable on the real system today. The model has to be redesigned on the real system, this is also the case for the diagnosis system. The diagnosis system also has to be redesigned, so general flight cases, not only the security control can be supervised. However, experiences and choices like input and output signals, and choice of sample interval can be reused from this thesis when a new model might be developed.
2

Black-Box Model Development of the JAS 39 Gripen Fuel Tank Pressurization System : Intended for a Model-Based Diagnosis System / Black-box-modellering av tanktrycksättning hos bränslesystemet i JAS 39 Gripen : Avsedd för ett modellbaserat diagnossystem

Kensing, Vibeke January 2002 (has links)
<p>The objective with this thesis is to build a Black-Box model of the tank pressurization system in JAS 39 Gripen. This model is intended to be used in an existing diagnosis system for the security control in the tank pressurization system. The tank pressurization system is a MIMO system. This makes the identification process more complicated when the best model is to be chosen. In this master's thesis the identification procedure for a MIMO system can be followed. Testing of the diagnosis system with the created Black-Box model shows that the model seems to be good enough. The diagnosis system takes the right decisions in the performed simulations. This shows that system identification might be a good alternative to physical modelling for a real-time model. The disadvantage with the Black-Box model is that it is less accurate in steady-state than the physical model used before is. The advantage is that it is faster than the physical model. The diagnosis system and the model developed in this thesis are not directly applicable on the real system today. The model has to be redesigned on the real system, this is also the case for the diagnosis system. The diagnosis system also has to be redesigned, so general flight cases, not only the security control can be supervised. However, experiences and choices like input and output signals, and choice of sample interval can be reused from this thesis when a new model might be developed.</p>

Page generated in 0.0668 seconds