• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métodos espectronodais para cálculos de transporte de partículas neutras com fonte fixa na formulação de ordenadas discretas e multigrupo de energia / Spectral nodal methods for multigroup fixed-source neutral particle transport calculations in the discrete ordinates formulation

Welton Alves de Menezes 22 August 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Um método espectronodal é desenvolvido para problemas de transporte de partículas neutras de fonte fixa, multigrupo de energia em geometria cartesiana na formulação de ordenadas discretas (SN). Para geometria unidimensional o método espectronodal multigrupo denomina-se método spectral Greens function (SGF) com o esquema de inversão nodal (NBI) que converge solução numérica para problemas SN multigrupo em geometria unidimensional, que são completamente livre de erros de truncamento espacial para ordem L de anisotropia de espalhamento desde que L < N. Para geometria X; Y o método espectronodal multigrupo baseia-se em integrações transversais das equações SN no interior dos nodos de discretização espacial, separadamente nas direções coordenadas x e y. Já que os termos de fuga transversal são aproximados por constantes, o método nodal resultante denomina-se SGF-constant nodal (SGF-CN), que é aplicado a problemas SN multigrupo de fonte fixa em geometria X; Y com espalhamento isotrópico. Resultados numéricos são apresentados para ilustrar a eficiência dos códigos SGF e SGF-CN e a precisão das soluções numéricas convergidas em cálculos de malha grossa. / A spectral nodal method is described for neutral particle energy multigroup fixed-source transport problems in cartesian geometry in the discrete ordinates (SN) formulation. For slab geometry the offered multigroup spectral nodal method is referred to as the spectral Greens function (SGF) method with the one-node block inversion (NBI) iterative scheme, which converges numerical solutions to multigroup slab-geometry SN problems, that are completely free from spatial truncation errors for scattering anisotropy of order L, provided L < N. For X; Y-geometry, the offered multigroup spectral nodal method is based on transverse integrations of the SN equations inside the discretization nodes, separately in x- and y- coordinate directions. Since the transverse-leakage terms are approximated by constants, the resulting nodal method is referred to as the multigroup SGF-contant nodal (SGF-CN) method, which is applied for multigroup X; Y-geometry fixed-source SN problems with isotropic scattering. Numerical results are presented to illustrate the efficiency of the SGF and SGF-CN codes and the accuracy of the converged numerical solutions in coarse-mesh calculations.
2

Métodos espectronodais para cálculos de transporte de partículas neutras com fonte fixa na formulação de ordenadas discretas e multigrupo de energia / Spectral nodal methods for multigroup fixed-source neutral particle transport calculations in the discrete ordinates formulation

Welton Alves de Menezes 22 August 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Um método espectronodal é desenvolvido para problemas de transporte de partículas neutras de fonte fixa, multigrupo de energia em geometria cartesiana na formulação de ordenadas discretas (SN). Para geometria unidimensional o método espectronodal multigrupo denomina-se método spectral Greens function (SGF) com o esquema de inversão nodal (NBI) que converge solução numérica para problemas SN multigrupo em geometria unidimensional, que são completamente livre de erros de truncamento espacial para ordem L de anisotropia de espalhamento desde que L < N. Para geometria X; Y o método espectronodal multigrupo baseia-se em integrações transversais das equações SN no interior dos nodos de discretização espacial, separadamente nas direções coordenadas x e y. Já que os termos de fuga transversal são aproximados por constantes, o método nodal resultante denomina-se SGF-constant nodal (SGF-CN), que é aplicado a problemas SN multigrupo de fonte fixa em geometria X; Y com espalhamento isotrópico. Resultados numéricos são apresentados para ilustrar a eficiência dos códigos SGF e SGF-CN e a precisão das soluções numéricas convergidas em cálculos de malha grossa. / A spectral nodal method is described for neutral particle energy multigroup fixed-source transport problems in cartesian geometry in the discrete ordinates (SN) formulation. For slab geometry the offered multigroup spectral nodal method is referred to as the spectral Greens function (SGF) method with the one-node block inversion (NBI) iterative scheme, which converges numerical solutions to multigroup slab-geometry SN problems, that are completely free from spatial truncation errors for scattering anisotropy of order L, provided L < N. For X; Y-geometry, the offered multigroup spectral nodal method is based on transverse integrations of the SN equations inside the discretization nodes, separately in x- and y- coordinate directions. Since the transverse-leakage terms are approximated by constants, the resulting nodal method is referred to as the multigroup SGF-contant nodal (SGF-CN) method, which is applied for multigroup X; Y-geometry fixed-source SN problems with isotropic scattering. Numerical results are presented to illustrate the efficiency of the SGF and SGF-CN codes and the accuracy of the converged numerical solutions in coarse-mesh calculations.
3

Um método SN híbrido direto para cálculos de sistemas combustível-moderador em geometria unidimensional / A direct hybrid SN method for slab-geometry fuel-moderator lattice calculations

Davi José Martins e Silva 10 June 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Descrevemos uma análise espectral das equações de ordenadas discretas (SN)a um grupo e a dois grupos de energia, onde seguimos uma analogia com o método de Case. Utilizamos, neste método, quadraturas angulares diferentes no combustível (NC) e no moderador (NM), onde em geral assumimos que NC > NM . Condições de continuidade especiais que acoplam os fluxos angulares que emergem do combustível (moderador) e incidem no moderador (combustível), foram utilizadas com base na equivalência entre as equações SN e PN-1, o que caracteriza a propriedade híbrida do modelo proposto. Sendo um método híbrido direto, utilizamos as NC + NM equações lineares e algébricas constituídas pelas (NC + NM)/2 condições de contorno reflexivas e (NC + NM)/2 condições de continuidade para determinarmos as NC + NM constantes. Com essas constantes podemos calcular os valores dos fluxos angulares e dos fluxos escalares em qualquer ponto do domínio. Apresentamos resultados numéricos para ilustrar a eficiência e a precisão do método proposto. / In this masters dissertation we describe a hybrid direct method for calculating the disadvantage factor and the neutron flux distribution in fuel-moderator lattices. For the mathematical model, we used the discrete ordinates (SN) transport equation, considering linearly anisotropic scattering in the monoenergetic model and isotropic scattering in the energy multigroup model in slab geometry. We describe a spectral analysis of the monoenergetic and two-group SN equations, in a way which is very similar to the Case method. The basic idea is to use higher order angular quadrature set in the highly absorbing fuel region (SNF)and lower order angular quadrature set in the diffusive moderator region (SNM) i.e., NF > NM. Therefore, we apply special continuity conditions for the fuel existing fluxes that constitute the incoming fluxes for the moderator region, and conversely for the moderator existing fluxes that constitute the incoming fluxes for the fuel region, based on the equivalence of the SN and PN-1 equations, which characterize the hybrid model. As a direct hybrid method, we use NF + NM linear algebraic equations composed of (NF + NM)/2 reflexive boundary conditions and (NF + NM)/2 continuity conditions to solve for the NF + NM expansion coefficients. With these coefficients we can calculate the numerical values for the angular fluxes and for the scalar fluxes at any location of domain. We present numerical results to illustrate the efficiency and the accuracy of the offered method.
4

Um método SN híbrido direto para cálculos de sistemas combustível-moderador em geometria unidimensional / A direct hybrid SN method for slab-geometry fuel-moderator lattice calculations

Davi José Martins e Silva 10 June 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Descrevemos uma análise espectral das equações de ordenadas discretas (SN)a um grupo e a dois grupos de energia, onde seguimos uma analogia com o método de Case. Utilizamos, neste método, quadraturas angulares diferentes no combustível (NC) e no moderador (NM), onde em geral assumimos que NC > NM . Condições de continuidade especiais que acoplam os fluxos angulares que emergem do combustível (moderador) e incidem no moderador (combustível), foram utilizadas com base na equivalência entre as equações SN e PN-1, o que caracteriza a propriedade híbrida do modelo proposto. Sendo um método híbrido direto, utilizamos as NC + NM equações lineares e algébricas constituídas pelas (NC + NM)/2 condições de contorno reflexivas e (NC + NM)/2 condições de continuidade para determinarmos as NC + NM constantes. Com essas constantes podemos calcular os valores dos fluxos angulares e dos fluxos escalares em qualquer ponto do domínio. Apresentamos resultados numéricos para ilustrar a eficiência e a precisão do método proposto. / In this masters dissertation we describe a hybrid direct method for calculating the disadvantage factor and the neutron flux distribution in fuel-moderator lattices. For the mathematical model, we used the discrete ordinates (SN) transport equation, considering linearly anisotropic scattering in the monoenergetic model and isotropic scattering in the energy multigroup model in slab geometry. We describe a spectral analysis of the monoenergetic and two-group SN equations, in a way which is very similar to the Case method. The basic idea is to use higher order angular quadrature set in the highly absorbing fuel region (SNF)and lower order angular quadrature set in the diffusive moderator region (SNM) i.e., NF > NM. Therefore, we apply special continuity conditions for the fuel existing fluxes that constitute the incoming fluxes for the moderator region, and conversely for the moderator existing fluxes that constitute the incoming fluxes for the fuel region, based on the equivalence of the SN and PN-1 equations, which characterize the hybrid model. As a direct hybrid method, we use NF + NM linear algebraic equations composed of (NF + NM)/2 reflexive boundary conditions and (NF + NM)/2 continuity conditions to solve for the NF + NM expansion coefficients. With these coefficients we can calculate the numerical values for the angular fluxes and for the scalar fluxes at any location of domain. We present numerical results to illustrate the efficiency and the accuracy of the offered method.

Page generated in 0.0689 seconds