• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mapping charge to function relationships of the DNA mimic protein Ocr

Kanwar, Nisha January 2014 (has links)
This thesis investigates the functional consequences of neutralising the negative charges on the bacteriophage T7 antirestriction protein ocr. The ocr molecule is a small highly negatively charged, protein homodimer that mimics a short DNA duplex upon binding to the Type I Restriction Modification (RM) system. Thus, ocr facilitates phage infection by binding to and inactivating the host RM system. The aim of this study was to analyse the effect of reducing the negative charge on the ocr molecule by mutating the acidic residues of the protein. The ocr molecule (117 residues) is replete with Asp and Glu residues; each monomer of the homodimer contains 34 acidic residues. Our strategy was to begin with a synthetic gene in which all the acidic residues of ocr had been neutralised. This so called ‘positive ocr’ (or pocr) was used as a template to gradually reintroduce codons for acidic residues by adapting the ISOR strategy proposed by D.S.Tawfik. After each round of mutagenesis an average of 4-6 acidic residues were incorporated into pocr. In this fashion a series of mutant libraries in which acidic residues were progressively introduced into pocr was generated. A high-throughput in vivo selection assay was developed and validated by assessing the antirestriction behaviour of a number of mutants of the DNA mimic proteins wtOcr and Orf18 ArdA. Further to this, selective screening of the libraries allowed us to select clones that displayed antirestriction activity. These mutants were purified and in vitro characterisation confirmed these mutants as displaying the minimum number of acidic residues deemed critical for the activity of ocr. This in vitro process effectively simulated the evolution of the charge mimicry of ocr. Moreover, we were able to tune the high-throughput assay to different selection criteria in order to elucidate various levels of functionality and unexpected changes in phenotype. This approach enables us to map the “in vitro” evolution of ocr to identify acidic residues that are required for protein expression, solubility and function proceeding to a fully functional antirestriction protein.
2

Investigation of the roles of nucleotide modifications and their respective modification enzymes on bacterial ribosome assembly and eukaryotic epitranscriptomic regulation

Abedeera, Sudeshi 20 July 2023 (has links)
No description available.

Page generated in 0.1306 seconds