• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NUMERICAL ANALYSIS OF TURBULENT GAS-SOLID FLOWS IN A VERTICAL PIPE USING THE EULERIAN TWO-FLUID MODEL

2013 January 1900 (has links)
Turbulent gas-solid flows are readily encountered in many industrial and environmental processes. The development of a generic modeling technique for gas-solid turbulent flows remains a significant challenge in the field of mechanical engineering. Eulerian models are typically used to model large systems of particles. In this dissertation, a numerical analysis was carried out to assess a current state-of-the-art Eulerian two-fluid model for fully-developed turbulent gas-solid upward flow in a vertical pipe. The two-fluid formulation of Bolio et al. (1995) was adopted for the current study and the drag force was considered as the dominant interfacial force between the solids and fluid phase. In the first part of the thesis, a two-equation low Reynolds number k-ε model was used to predict the fluctuating velocities of the gas-phase which uses an eddy viscosity model. The stresses developed in the solids-phase were modeled using kinetic theory and the concept of granular temperature was used for the prediction of the solids velocity fluctuation. The fluctuating drag, i.e., turbulence modulation term in the transport equation of the turbulence kinetic energy and granular temperature was used to capture the effect of the presence of the dispersed solid particles on the gas-phase turbulence. The current study documents the performance of two popular turbulence modulation models of Crowe (2000) and Rao et al. (2011). Both models were capable of predicting the mean velocities of both the phases which were generally in good agreement with the experimental data. However, the phenomena that small particles cause turbulence suppression and large particles cause turbulence enhancement was better captured by the model of Rao et al. (2011); conversely, the model of Crowe (2000) produced turbulence enhancement in all cases. Rao et al. (2011) used a modified wake model originally proposed by Lun (2000) which is activated when the particle Reynolds number reaches 150. This enables the overall model to produce turbulence suppression and augmentation that follows the experimental trend. The granular temperature predictions of both models show good agreement with the limited experimental data of Jones (2001). The model of Rao et al. (2011) was also able to capture the effect of gas-phase turbulence on the solids velocity fluctuation for three-way coupled systems. However, the prediction of the solids volume fraction which depends on the value of the granular temperature shows noticeable deviations with the experimental data of Sheen et al. (1993) in the near-wall region. Both turbulence modulation models predict a flat profile for the solids volume fraction whereas the measurements of Sheen et al. (1993) show a significant decrease near the wall and even a particle-free region for flows with large particles. The two-fluid model typically uses a low Reynolds number k-ε model to capture the near-wall behavior of a turbulent gas-solid flow. An alternative near-wall turbulence model, i.e., the two-layer model of Durbin et al. (2001) was also implemented and its performance was assessed. The two-layer model is especially attractive because of its ability to include the effect of surface roughness. The current study compares the predictions of the two-layer model for both clear gas and gas-solid flows to the results of a conventional low Reynolds number model. The effects of surface roughness on the turbulence kinetic energy and granular temperature were also documented for gas-particle flows in both smooth and rough pipes.
2

Modulation de mélange, transport et turbulence dans des suspensions solides : étude et modélisation / Mixing, transport and turbulence modulation in solid suspensions : study and modelling

Laenen, François 24 February 2017 (has links)
Le transport de particules par des écoulements turbulents est un phénomène présent dans de nombreux écoulements naturels et industriels, tels que la dispersion de polluants dans l'atmosphère ou du phytoplancton et plastiques dans et à la surface des océans. Les modèles prédictifs classiques ne peuvent prévoir avec précision la formation de larges fluctuations de concentrations. La première partie de cette thèse concerne une étude de la dispersion turbulente de traceurs émis à partir d'une source ponctuelle et continue. Les fluctuations spatiales de masse sont déterminées en fonction de la distance à la source et à l'échelle d'observation. La combinaison de plusieurs phénomènes physiques à l'origine du mélange limite la validité d'une caractérisation de géométrie fractale. Une approche alternative est proposée, permettant d'interpréter les fluctuations massiques en terme des différents régimes de séparation de pair dans des écoulements turbulents. La seconde partie concerne des particules ayant une inertie finie, dont la dispersion dans l'espace des vitesses requiert de développer des techniques de modélisation adaptées. Une méthode numérique originale est proposée pour exprimer la distribution des particules dans l'espace position-vitesse. Cette méthode est ensuite utilisée pour décrire la modulation de la turbulence bi- dimensionnelle par des particules inertielles. A grand nombres de Stokes, l'effet montré est analogue à celui d'une friction effective à grande échelle. Aux petits Stokes, le spectre de l'énergie cinétique du fluide et les transferts non-linéaires sont modifiées d'une manière non triviale. / The transport of particles by turbulent flows is ubiquitous in nature and industry. It occurs in planet formation, plankton dynamics and combustion in engines. For the dispersion of atmospheric pollutants, traditional predictive models based on eddy diffusivity cannot accurately reproduce high concentration fluctuations, which are of primal importance for ecological and health issues. The first part of this thesis relates to the dispersion by turbulence of tracers continuously emitted from a point source. Mass fluctuations are characterized as a function of the distance from the source and of the observation scale. The combination of various physical mixing processes limits the use of fractal geometric tools. An alternative approach is proposed, allowing to interpret mass fluctuations in terms of the various regimes of pair separation in turbulent flows. The second part concerns particles with a finite and possibly large inertia, whose dispersion in velocity requires developing efficient modelling techniques. A novel numerical method is proposed to express inertial particles distribution in the position-velocity phase space. Its convergence is validated by comparison to Lagrangian measurements. This method is then used to describe the modulation of two-dimensional turbulence by large-Stokes-number heavy particles. At high inertia, the effect is found to be analogous to an effective large-scale friction. At small Stokes numbers, kinetic energy spectrum and nonlinear transfers are shown to be modified in a non-trivial way which relates to the development of instabilities at vortices boundaries.
3

Etude numérique et modélisation de la modulation de la turbulence dans un écoulement de nappe chargée en particules

vermorel, olivier 13 November 2003 (has links) (PDF)
Ce travail de thèse est consacré à l'étude numérique et théorique de la modulation de la turbulence par des particules. Cette étude s'appuie sur des résultats issus de simulations de type Euler/Lagrange qui résolvent directement les équations instantanées de la phase gazeuse et effectuent un suivi de trajectoires des particules. La configuration étudiée représente une nappe de particules injectées à haute vitesse dans une turbulence homogène isotrope décroissante. Le mouvement des particules est supposé uniquement gouverné par la force de traînée visqueuse. Le chargement en particules est suffisamment important pour que les particules influent sur la phase gazeuse (couplage inverse) mais suffisamment faible pour pouvoir négliger les collisions interparticulaires. Une analyse des équations de transport des principales grandeurs moyennes de l'écoulement est menée pour déterminer les effets directs et indirects des particules sur la turbulence fluide. L'étude des transferts d'énergie entre phases montre que la présence des particules tend à détruire la turbulence gazeuse au centre de la nappe et à l'augmenter à la périphérie. Ce dernier effet est causé par la forte corrélation entre la distribution de particules et la vitesse instantanée du gaz. Le modèle k-epsilon est ensuite étudié et la validité de ses hypothèses de fermeture en écoulement diphasique est éprouvée à l'aide de tests a priori. une nouvelle formulation de type viscosité turbulente, fonction des paramètres diphasiques, est utilisée pour modéliser le tenseur de Reynolds du gaz. Une équation de Langevin diphasique est également testée pour modéliser les équations de vitesse de dérive et de covariance des fluctuations de vitesse fluide-particules.

Page generated in 0.1177 seconds