• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 20
  • 9
  • Tagged with
  • 71
  • 71
  • 38
  • 37
  • 27
  • 21
  • 18
  • 15
  • 15
  • 15
  • 14
  • 12
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Inelastic Electron Tunneling Spectroscopy with the Scanning Tunneling Microscope : a combined theory-experiment approach / La Spectroscopie par Effet Tunnel Inélastique avec un Microscope à Effet Tunnel : une approche combinée de la théorie et de l'expérience

Burema, Shiri 01 July 2013 (has links)
La Spectroscopie par Effet Tunnel Inélastique (IETS) avec un Microscope à Effet Tunnel (STM) est une nouvelle technique de spectroscopie vibrationnelle, qui permet de caractériser des propriétés très fines de molécules adsorbées sur des surfaces métalliques. Des règles de selection d’excitation vibrationnelle basées sur la symétrie ont été proposées, cependant, elles ne semblent pas exhaustives pour expliquer la totalité du mécanisme et des facteurs en jeu; elles ne sont pas directement transposables pour les propriétés d'un adsorbat et sont lourdes d'utilisation. Le but de cette thèse est donc d'améliorer ces règles de selection par une étude théorique. Un protocole de simulation de l'IETS a été développé, paramétré, et évalué, puis appliqué pour calculer des spectres IETS pour différentes petites molécules, qui sont systématiquement liées, sur une surface de cuivre. Des principes additifs de l'IETS ont été developpés, notamment concernant l’extension dans le vide de l’état de tunnel, l'activation/ quench sélectif de certains modes du aux propriétés électroniques de certains fragments moléculaires, et l'application de certaines règles d'addition de signaux IETS. De plus, des empreintes vibrationnelles par des signaux IETS ont été determinées pour permettre de différentier entre les orientations des adsorbats, la nature chimique des atomes et les isomères de structures. Une stratégie simple utilisant les propriétés de distribution de la densité électronique de la molécule isolée pour prédire les activités IETS sans des couts importants de calculs a aussi été développée. Cette expertise a été utilisée pour rationaliser et interpréter les mesures expérimentales des spectres IETS pour des métalloporphyrines et métallophtalocyanines adsorbées. Ces études sont les premières études IETS pour des molécules aussi larges et complexes. L'approche expérimentale a permis de déterminer les limitations actuelles des simulations IETS. Les défauts associés à l'identification ont été résolus en faisant des simulations d'images STM complémentaires. / Inelastic Electron Tunneling Spectroscopy (IETS) with the Scanning Tunneling Microscope (STM) is a novel vibrational spectroscopy technique that permits to characterize very subtle properties of molecules adsorbed on metallic surfaces. Its proposed symmetry-based propensity selection rules, however, fail to fully capture its exact mechanism and influencing factors; are not directly retraceable to an adsorbate property and are cumbersome. In this thesis, a theoretical approach was taken to improve them. An IETS simulation protocol has been developed, parameterized and benchmarked, and consequently used to calculate IETS spectra for a set of systematically related small molecules on copper surfaces. Extending IETS principles were deduced that refer to the tunneling state’s vacuum extension, the selective activating/quenching of certain types of modes due to the moieties’ electronic properties, and the applicability of a sum rule of IETS signals. Also, fingerprinting IETS-signals that enable discrimination between adsorbate orientations, the chemical nature of atoms and structural isomers were determined and a strategy using straightforward electronic density distribution properties of the isolated molecule to predict IETS activity without (large) computational cost was developed. This expertise was used to rationalize and interpret experimentally measured IETS spectra for adsorbed metalloporphyrins and metallophthalocyanines, being the first IETS studies of this large size. This experimental approach permitted to determine the current limitations of IETS-simulations. The associated identification shortcomings were resolved by conducting complementary STM-image simulations.

Page generated in 0.0458 seconds