Spelling suggestions: "subject:"moléculaire"" "subject:"moléculaires""
1 |
Basic cultural determinants of recombinant protein yield in Nicotiana benthamiana used as a transient expression host for the flu vaccine antigen hemagglutinin H1Shang, Lingling 14 November 2019 (has links)
Les plantes sont des hôtes prometteurs pour la production de protéines recombinantes d’intérêt médical et de nombreuses études ont été réalisées au cours des années pour optimiser le taux d’expression des transgènes ou la maturation des protéines en systèmes végétaux. En comparaison, les connaissances demeurent limitées au sujet de l’influence des facteurs environnementaux et des pratiques culturales sur l’expression et le rendement en protéines recombinantes dans les plantes. Les pratiques culturales courantes en serriculture, si elles permettent en général une production importante de biomasse et des rendements élevés en produits horticoles, ne sont pas nécessairement bien adaptés à la production de protéines recombinantes dans un contexte de moléculture. Dans cette étude, nous avons étudié les effets d’un enrichissement en CO2 atmosphérique, d’une forte irradiance sur le couvert végétal, d’une fertigation riche en ammonium et d’une densité de plantation élevée sur la croissance, le développement et le rendement en protéine recombinante chez l’hôte d’expression Nicotiana benthamiana utilisé pour la production du principe actif d’un vaccin contre la grippe, l’hémagglutinine H1 du virus de l’influenza. En bref, nos données ont montré les effets positifs (1) d’un enrichissement en CO2, d’une forte luminosité, d’un éclairage intercalaire dans la canopée végétale ou d’une solution nutritive riche en ammonium sur la production de biomasse et le contenu en protéines dans la plante; et (2) d’un éclairage intercalaire et d’une forte densité culturale sur le rendement en protéine H1 par unité de surface en culture. En revanche, le rendement en H1 n’a pas été altéré, ou l’a été négativement, sous de fortes concentrations en CO2 atmosphérique, sous une forte luminosité au-dessus du couvert végétal ou par une solution nutritive riche en ammonium. En somme, nos données indiquent que les conditions de culture optimales pour la production de produits horticoles en conditions confinées peuvent ne pas être appropriées dans un contexte de moléculture où l’objectif ultime est le rendement en protéine recombinante, non pas la production de biomasse foliaire, la teneur en nutriments ou le rendement en fruits ou en fleurs. / Plants are promising hosts for the production of medically-useful recombinant protein sand numerous studies have been done over the years to optimize transgene expression rates and protein maturation processes in plant systems. By comparison, little is still known about the influence of basic environmental factors and cultural practices on the expression and yield of heterologous proteins in plants. Current cultural practices in greenhouse settings, that generally allow for an increased biomass or food/flower product yield, are not necessarily well suited to recombinant protein production in a molecular farming context. In this study, we investigated the effects of CO2 enrichment, supplemental lighting, ammonium fertigation and plant culture density on growth, development and recombinant protein yield of the protein expression host Nicotiana benthamiana used to express the flu vaccine antigen influenza virus hemagglutinin H1. In brief, our data showed (1) atmospheric CO2 enrichment, high-light irradiance, supplemental LED inter-lighting in the plant canopy and high-ammonium fertigation to enhanced leaf biomass production and endogenous protein content on a plant basis, and (2) LED inter-lighting or elevated plant density to increase recombinant protein yield on a whole-crop area basis. On the other hand, H1 content was not influenced or negatively affected by CO2 enrichment, high-light irradiance or high-ammonium supply on a leaf fresh weight basis. Overall, our findings indicate that the optimal cultural practices for the production of horticultural food products or ornementals in controlled environment settings may not be optimal in molecular farming settings, where the ultimate goal is recombinant protein yield and quality, not leaf biomass, nutrient content, fruit yield or flower quality.
|
2 |
Modulation de la protéolyse chez les plantes vasculaires dans une perspective de molécultureGoulet, Charles 16 April 2018 (has links)
Au cours des dernières années, les plantes ont émergé comme une plateforme de choix pour la production de protéines recombinantes d'intérêt pharmaceutique ou industriel. La moléculture n'est par contre pas exempte de difficultés alors que les protéines hétérologues rencontrent souvent, par exemple, des problèmes de dégradation causés par les protéases endogènes, avec un impact direct sur le rendement et la qualité du produit. Pour répondre à cette problématique, nous avons exprimé des inhibiteurs de protéases hétérologues dans le but de moduler in vivo l'activité protéolytique des plantes et ainsi permettre une protection de protéines recombinantes coexprimées. Afin d'évaluer sur une base globale le potentiel des inhibiteurs de protéases en moléculture, ces expériences furent réalisées avec différents systèmes d'expression et à différents endroits dans la cellule. La transformation de plants de pommes de terre (Solanum tuberosum) avec l'inhibiteur de cathepsine D de tomate (SICDI) ciblé dans le cytosol a provoqué une augmentation marquée du contenu en protéines foliaires associée à une hausse générale de la majorité des protéines endogènes. L'expression de cet inhibiteur à large spectre a par ailleurs permis la protection d'une protéine d'intérêt médical, l' alpha-l-antichymotrypsine humaine, exprimée de façon transitoire dans le cytosol des feuilles d'une lignée transgénique, illustrant le potentiel de la plateforme pour ce compartiment de la cellule. Puisque de nombreuses protéines nécessitent des modifications post-traductionnelles complexes qui ont lieu dans le système de sécrétion, il apparaissait par la suite pertinent de vérifier l'effet des inhibiteurs de protéases dans ce dernier compartiment. Cette évaluation fut réalisée à l'aide d'un système d'expression transitoire par agroinfiltration chez Nicotiana benthamiana. La plateforme étant encore peu caractérisée, une attention particulière ad' abord été accordée aux réactions de la plante au cours du processus d'infiltration, résultant en l'élaboration d'une carte protéomique de l' apoplaste foliaire de N. benthamiana. La coexpression de deux inhibiteurs de protéases dans le système de sécrétion de N. benthamiana, soit SICDI et la cystatine 9 de tomate, avec l'anticorps d'intérêt médical C5-1 a par ailleurs permis une augmentation du rendement de l'anticorps, confirmant l'utilité des inhibiteurs de protéases dans la protection des protéines recombinantes sécrétées.
|
3 |
Identification, caractérisation et utilisation d'un promoteur de la famille des MADS BOX isolé à partir du génome de Medicago sativa, MSMADS1, avec pour objectif l'application d'une stratégie d'ablation floraleFortin, Marie-Christine 12 April 2018 (has links)
Les nombreux progrès en génie génétique ont mené au développement d’un nouveau système pour produire des molécules thérapeutiques : la moléculture végétale. L’intérêt de transformer des plantes en usine à molécules au service de l’Homme s’explique par les faibles coûts de production, la biosécurité et la capacité des plantes à synthétiser les protéines recombinantes présentant un repliement, une glycosylation et une activité appropriés. L’ablation florale constitue l’une des meilleures méthodes pour assurer le confinement génétique par stérilité mâle et femelle en plein champ. Avec objectif final de développer cette stratégie chez la luzerne (Medicago sativa), le promoteur MsMADS1 de la famille des MADS box a été isolé du génome de la luzerne et fusionné au gène rapporteur GUS et au gène codant pour la saporine, une protéine cytotoxique. Suite à la transformation génétique d’Arabidopsis thaliana (Arabidopsis) à l’aide de diverses constructions, des plants transgéniques ont été générés et analysés. Des analyses d’expression transitoire ont aussi été effectuées pour évaluer l’expression du gène rapporteur GUS dans des cellules de luzerne par agro-infiltration des différentes constructions réalisées. Parallèlement, la marche génomique a été utilisée pour isoler et caractériser la séquence génomique du gène MsMADS1. La structure génomique du gène MsMADS1 semble inhabituelle avec un premier intron de plus de 1,9 kb et cette séquence ne présente pas d’homologie avec des séquences connues. Chez les plants transgéniques d’Arabidopsis, le promoteur MsMADS1 a permis l’expression de GUS de façon préférentielle dans les fleurs. Étonnamment, les constructions contenant le gène codant pour la saporine ont mené à l’obtention de plants transgéniques viables, dont le phénotype est identique aux plants sauvages d’Arabidopsis. / Progress in genetic engineering has led to the development of a new system to produce therapeutic molecules in plants: molecular pharming. The interest to transform plants into molecular factories for human purposes is explained by its lower cost, its biosecurity and the capacity of plants to synthesize recombinant proteins with appropriate folding, glycosylation and activity. Floral ablation represents one of the best ways to establish both male and female genetic confinement in open field conditions. With the final objective to develop this strategy in alfalfa (Medicago sativa), the promoter of a MADS box gene, MsMADS1, was isolated from the alfalfa genome. The genomic organisation of MsMADS1 appears to be unusual with a first intron longer than 1,9 kp without homology to any known sequence. This promoter was fused to the GUS reporter gene and a cytotoxic protein gene (saporin). Following Agrobacterium-mediated transformation of Arabidopsis thaliana (Arabidopsis) with various constructs, transgenic plants were regenerated and analysed. Transient expression was also assayed to evaluate GUS expression in alfalfa cells. Additional MsMADS1 genomic sequence was obtained by genome walking. In transgenic Arabidopsis, the MsMADS1 promoter allowed GUS expression preferentially in flowers. Surprisingly, saporin constructs resulted in the production of viable transgenic plants with a phenotype identical to wild Arabidopsis.
|
Page generated in 0.0542 seconds