• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Design of Sliding Mode Controller for Mold Level Control System

Zheng, Wan-Sheng 27 August 2001 (has links)
A sliding mode controller is proposed for controlling molten steel level in a mold of continuous casting machine in this thesis. The comparisons of dynamic response, control accuracy, and reaction to perturbation between proposed controller and PID controller currently used are also presented. A perturbation estimator is embedded in the sliding mode controller in order to enhance the robustness against model uncertainty, parameter variation, and external disturbance. The perturbation considered in this thesis includes variation of casting speed, variation of area of slide gate, time delay, variation of mold area, and Dead-Band etc.. In addition, the effects of adjusting the design parameter of the proposed controller on system¡¦s dynamics are also considered.
2

The Stability Analysis of Mold Level Control System

Yang, Chu-Kang 28 August 2001 (has links)
The theoretical stability analysis of mold level control system for slab continuous casting machine is presented in this thesis. In the procedure of analyzing the stability of the mold level control system, the PLC program written for the control system is studied first in order to obtain the mathematical model of a PID controller. Then the mathematical models of servo-amplifier, servo-valve, electro hydraulic system to the output of mold level are established. A simulative control system using Matlab software is constructed in accordance with these mathematical models so that not only the results of stability analysis can be verified but also the dynamic response of controlled system can be studied. Finally, the effects of some potential disturbance on system¡¦s dynamics, stability, and control accuracy are also analyzed.

Page generated in 0.0852 seconds