• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Dynamic Simulation of Thermo-Mechanical Properties of Ultra-Thin Poly(methyl methacrylate) Films

Silva Hernandez, Carlos Ardenis A. 2010 May 1900 (has links)
The thermal conductivity of PMMA films with thicknesses from 5 to 50 nanometers and layered over a treated silicon substrate is explored numerically by the application of the reverse non-equilibrium molecular dynamics (NEMD) technique and the development of a coarse-grained model for PMMA, which allows for the simulation time of hundreds of nanoseconds required for the study of large polymer systems. The results showed a constant average thermal conductivity of 0.135 W/m_K for films thickness ranging from 15 to 50 nm, while films under 15 nm in thickness showed a reduction of 30% in their conductivity. It was also observed that polymer samples with a degree of polymerization equal to 25% of the entanglement length had 50% less thermal conductivity than films made of longer chains. The temperature profiles through the films thickness were as predicted by the Fourier equation of heat transfer. The relative agreement between the thermal conductivity from experiments (0.212 W/m_K for bulk PMMA) and the results from this investigation shows that with the proper interpretation of results, the coarse-grained NEMD is a useful technique to study transport coefficients in systems at larger nano scales.

Page generated in 0.1306 seconds