• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Organická chemie v experimentech / Organic Chemistry in Experiments

Krištůfková, Radka January 2013 (has links)
The thesis deals with molecular gastronomy as an expanding culinary direction and is focused on the use in chemistry teaching in primary and secondary education. There are described home experiments which were verified, documented and explained.
12

ESTABLISHMENT OF HIGH-THROUGHPUT TECHNIQUES FOR STUDYING STARCH FUNCTIONALITIES

Miguel A Alvarez Gonzales (7040813) 12 August 2019 (has links)
<p>Maize is one of the top sources of food starch. Industrial use of starch is mostly in its native form and used due to their functional and structural properties. Native starch properties and functionalities have been altered using chemical. An alternative for the development of native starch substituents with desirable starch properties is the use of mutagenesis techniques to increase genetic variation in maize kernels. With this approach, a highly diverse library of native starches with different properties are produced. Traditional analysis of the functional and structural properties requires generous amounts of material as well as a time-consuming and costly breeding process to obtain enough kernels. To address this difficulty, high-throughput techniques are proposed for studying starch properties and functions which includes a 1) single kernel sampling method for the isolation of milligrams of starch, and techniques for studying starch based on functional properties, 2) retrogradation and 3) shear resistance, using low-volume low-concentration starch pastes.</p><p>First, three mechanical approaches were evaluated for the collection of endosperm samples from individual kernels: razor blade, 1.5 mm drill bit, and trephine bur. Furthermore, two methods for the isolation of crude starch from endosperm samples (steeping method and combination of proteases and sonication) were compared. In this study, the mechanical approaches were evaluated using the recovery rate, throughput, and germination rate of sampled kernels. Moreover, yield determination, particle size distribution, and morphological evaluation using a light microscope were performed on crude starch isolated from the endosperm samples. The use of trephine bur to collect endosperm samples and isolation of crude starch using protease digestion and sonication showed the best combination for a high-throughput setting. </p><p>Second, a high-throughput technique using milligram sample for the screening of retrogradation-resistant starch was evaluated by comparing two spectrophotometric techniques: turbidity method and molecular rotor (MR). MRs are fluorescent probes with high sensitivity to the viscosity of their environment, polarity of the media, molecular crowding, and free volume. After excitation, MRs relax through rotational movement and reduces the emission of fluorescence. In this study, hydroxypropylated waxy corn starch (WCS) and hydroxypropylated normal corn starch (NCS) were used and their retrogradation kinetics was compared with retrogradation kinetics of native WCS and NCS. </p><p>It was found that the molecular rotor 9-(2-carboxy-2-cyaovinyl)-julolidine (CCVJ) was effective to sense changes during slow retrogradation of amylose-containing starch pastes. Development of elastic modulus of retrograded NCS pastes obtained from dynamical rheology showed high correlation with the development of fluorescence intensity of the CCVJ. Furthermore, rate of retrogradation using fluorescence intensity was affected by the introduction of a retrogradation inhibitor, hydroxypropyl groups. Accelerated retrogradation of low-concentration WCS pastes was measured using the turbidity method and fluorescence intensity of CCVJ in a microplate. Accelerated retrogradation was performed by subjecting the low-concentration WCS pastes to six freeze-thaw cycles of -20 ºC for 1 hour and 30 ºC for 1 hour. Overall, development of turbidity resulted in the more sensitive technique to detect rate of retrogradation of amylopectin-containing starch. </p><p>The last part of this research studied the use of CCVJ as a technique to identify shear-resistant starch in starch slurries using milligram sample. For this purpose, WCS was cross-linked with sodium trimetaphosphate (STMP) and phosphoryl chloride (POCl<sub>3</sub>). Low-volume starch slurries having CCVJ were prepared ranging from 0.5% to 1% starch concentration in a 96-well PCR plates and subjected to heat and shear treatments. It was found that fluorescence intensity measured in native WCS pastes were the lowest. Furthermore, fluorescence intensity of the CCVJ in the gelatinized starch increased as the amount of cross-linker increased in the cross-linked WCS. After shear treatments, the same trend in fluorescence intensity increase was recorded in all the crosslinked WCS. Results obtained using fluorescence intensity were compared with rapid viscosity analyzer (RVA) and images from microscope. Results obtained from both techniques corroborated the findings using fluorescence intensity.</p><p>In general, the findings of this research provide new insights into the possibilities of developing a high-throughput screening platform of milligram starch sample based on their physical properties. </p>
13

Purification and Characterization of Acheta domesticus and Gryllodes sigillatus Cricket Chitin and Chitosan for Bioactive and Biodegradable Food Packaging Applications

Morgan J Malm (11763944) 03 December 2021 (has links)
<p>The production of insects for protein is projected to reach a market share of 1.33 billion USD, a rapid increase from the estimated 144 million USD share of 2019 market. The isolation of insect protein produces by-products, including chitin. Currently chitin is extracted from aquaculture by-products, such as shrimp and crab shells, and used to produce chitosan for various applications in the supplement and food industry. With the insect market expected to continue its growth, the feasibility of sourcing commercial chitin and chitosan from reared crickets’, and the application properties of its counterpart, chitosan, was investigated in this dissertation. In the first part of this dissertation, chitin from two commonly reared crickets in the Unites States, <i>Acheta domesticus</i> and <i>Gryllodes sigillatus</i>, was successfully extracted, purified, and identified as a commercially viable option for chitin and chitosan. Extensive crustacean chitin studies served as the foundation of purification steps, however durations were adjusted to account for intrinsic differences between insects and crustacean exoskeletons. Furthermore, cricket chitosan was prepared and optimized with varying degrees of deacetylation. As expected, cricket chitosan had lower molecular but did not have a detectable effect on the bioactive properties tested. All cricket chitosan produced had similar lipid binding capacity <i>in vitro</i>. Additionally, the microbial inhibition of cricket chitosan and commercial chitosan (~70% DDA) were not significantly different when evaluated against <i>L. innocua</i> and <i>E. coli</i>. High DDA cricket chitosan showed greatest bacterial inhibition as expected. In the second part of this dissertation, cricket derived chitosan showed similar and improved food packaging properties, when evaluated against commercial shrimp chitosan. microstructure analysis provided by scanning electron microscopy showed greater compaction and agglomeration of cricket chitosan films. The change in microstructure may be attributed to the increased complexity generally attributed to insect chitosan materials, a result of remaining melanin and protein in close association with insect exoskeleton chitosan. As a result, cricket films had similar or increased tensile strengths but decreased elongation percentages when compared to shrimp films. Water vapor permeability of cricket films was decreased due to tortuosity. Residual melanin likely played an important role in increasing cricket film surface hydrophobicity and providing enhanced light barrier properties. Overall, this dissertation successfully shows the potential of crickets as insect derived chitin and chitosan, and its effectiveness as a lipid binding and antibacterial agent, as well as its potential use in biobased food packaging. </p>

Page generated in 0.0818 seconds