• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding the effect of material composition and microstructure on the hot corrosion behaviour of plasma sprayed thermal barrier coatings

Najafi, Ehsan January 2019 (has links)
Thermal barrier coatings (TBC) are used in the hot sections of gas turbine engine in order to insulate the substrate at high temperature. Molten salt infiltration retards the durability of TBCs. The current standard material, i.e. 8YSZ is susceptible to molten salt infiltration. Therefore, alternate TBC materials are desirable. In addition to material composition, the TBC microstructure plays an important role in mitigating molten salt infiltration. Therefore, in this work, three different TBC variations were investigated. The first variation was a columnar microstructured 48YSZ TBC processed by SPS (48YSZ-SPS). The second variation was a columnar microstructured 8YSZ TBC processed by SPS (8YSZ-SPS), and the third variation was a lamellar microstructured 8YSZ TBC deposited by APS (8YSZ-APS). The as-sprayed TBC specimens were characterized by SEM/EDS, porosity analysis and XRD measurements. Later, the TBC specimens were exposed to hot corrosion test and their interaction with the molten salts were investigated using SEM (EDS and XRD). It was shown that an increase in stabilizer content (yttria content) in zirconia (in the case of 48YSZ) leads to an improved hot corrosion resistance due to the adequate amount of yttria content, which restricts the molten salt infiltration by forming needle like YVO4 phase. In terms of microstructure comparison, the infiltration behavior was similar for columnar microstructured 8YSZ and lamellar microstructured 8YSZ-APS as the molten salts infiltrated the coatings completely compared to the 48YSZ TBC. Furthermore, it seems that the molten salt infiltrates the TBC through globular pores, delamination cracks and splat boundaries in the case of APS-TBCs whereas the column gaps favor easier infiltration of molten salts in the case of columnar microstructured SPS processed TBCs.

Page generated in 0.1571 seconds