1 |
CMC Modelling of Enclosure FiresCleary, Matthew John January 2005 (has links)
This thesis describes the implementation of the conditional moment closure (CMC) combustion model in a numerical scheme and its application to the modelling of enclosure fires. Prediction of carbon monoxide (CO) in the upper smoke layer of enclosure fires is of primary interest because it is a common cause of death. The CO concentration cannot be easily predicted by empirical means, so a method is needed which models the chemistry of a quenched, turbulent fire plume and subsequent mixing within an enclosed space. CMC is a turbulent combustion model which has been researched for over a decade. It has provided predictions of major and minor species in jet diffusion flames. The extension to enclosure fires is a new application for which the flow is complex and temperatures are well below adiabatic conditions. Advances are made in the numerical implementation of CMC. The governing combustion equations are cast in a conserved, finite volume formulation for which boundary conditions are uniquely defined. Computational efficiency is improved through two criteria which allow the reduction in the size of the computational domain without any loss of accuracy. Modelling results are compared to experimental data for natural gas fires burning under a hood. Comparison is made in the recirculating, post-flame region of the flow where temperatures are low and reactions are quenched. Due to the spatial flux terms contained in the governing equations, CMC is able to model the situation where chemical species are produced in the high temperature fire-plume and then transported to non-reacting regions. Predictions of CO and other species are in reasonable agreement with the experimental data over a range of lean and rich hood-fire conditions. Sensitivity of results to chemistry, temperature and modelling closures is inves- tigated. Species predictions are shown to be quite different for the two detailed chemical mechanisms used. Temperature conditions within the hood effect the for- mation of species in the plume prior to quenching and subsequently species predic- tions in the post-flame region are also effected. Clipped Gaussian and ß-function probability density functions (PDFs) are used for the stochastic mixture fraction. Species predictions in the plume are sensitive to the form of the PDF but in the post-flame region, where the ß-function approaches a Gaussian form, predictions are relatively insensitive. Two models are used for the conditional scalar dissipation: a uniform model, where the conditional quantity is set equal to the unconditional scalar dissipation across all mixture fraction space; and a model which is consistent with the PDF transport equation. In the plume, predictions of minor species are sensitive to the modelling used, but in the recirculating, post-flame region species are not significantly effected.
|
2 |
Numerical Simulation of Flow and Heat Transfer in Internal Multi-Pass Cooling Channel within Gas Turbine BladeChu, Hung-Chieh 1979- 14 March 2013 (has links)
Results from numerical simulation were performed to study flow and heat transfer in two types of rotating multi-pass cooling channels. Second moment closure model was used to solve flow in domain generated from Chimera method.
The first type was a four-pass channel with two different inlet settings. The main flowing channel was rectangular channel (AR=2:1) with hydraulic diameter (Dh ) equals to 2/3 inch (16.9 mm). The first and fourth channel were set as different aspect ratio (AR=2:1; AR=1:1). Reynolds number (Re) used in this part was 10,000. The rotating angle was set as 90 degrees. The density ratio was set as 0.115. The rotation number varied from 0.0 to 0.22. It was showed that inlet effect only caused influence to flow and heat transfer in first two passages.
The second type was a four-pass channel with/without addition of vane in smooth turn portion. The main flowing channel was rectangular channel (AR=2:1) with hydraulic diameter (Dh) equals to 2/3 inch. The first and fourth passages were set to be square duct (AR=1:1). The Reynolds number (Re) used in this part was 20,000. Three rotation numbers were set here (Ro=0.0; Ro=0.2; Ro=0.4). The density ratio and rotating angle varied from 0.12 to 0.32 and from 45 degrees to 90 degrees respectively. According to numerical results, it was revealed that the addition of vane in smooth turn portion did not cause influence to part before it. However, it caused significant influence to flow and heat transfer in smooth turn portion and part after it.
|
3 |
Evaluation of Maximum Entropy Moment Closure for Solution to Radiative Heat Transfer EquationFan, Doreen 22 November 2012 (has links)
The maximum entropy moment closure for the two-moment approximation of the radiative
transfer equation is presented. The resulting moment equations, known as the M1 model, are solved using a finite-volume method with adaptive mesh refinement (AMR) and two Riemann-solver based flux function solvers: a Roe-type and a Harten-Lax van Leer (HLL) solver. Three different boundary schemes are also presented and discussed. When compared to the discrete ordinates method (DOM) in several representative one- and two-dimensional radiation transport problems, the results indicate that while the M1 model cannot accurately resolve multi-directional radiation transport occurring in low-absorption media, it does provide reasonably accurate solutions, both qualitatively and quantitatively, when compared to the DOM predictions in most of the test cases involving either absorbing-emitting or scattering media. The results also show that the M1 model is computationally less expensive than DOM for more realistic radiation transport problems involving scattering and complex geometries.
|
4 |
Evaluation of Maximum Entropy Moment Closure for Solution to Radiative Heat Transfer EquationFan, Doreen 22 November 2012 (has links)
The maximum entropy moment closure for the two-moment approximation of the radiative
transfer equation is presented. The resulting moment equations, known as the M1 model, are solved using a finite-volume method with adaptive mesh refinement (AMR) and two Riemann-solver based flux function solvers: a Roe-type and a Harten-Lax van Leer (HLL) solver. Three different boundary schemes are also presented and discussed. When compared to the discrete ordinates method (DOM) in several representative one- and two-dimensional radiation transport problems, the results indicate that while the M1 model cannot accurately resolve multi-directional radiation transport occurring in low-absorption media, it does provide reasonably accurate solutions, both qualitatively and quantitatively, when compared to the DOM predictions in most of the test cases involving either absorbing-emitting or scattering media. The results also show that the M1 model is computationally less expensive than DOM for more realistic radiation transport problems involving scattering and complex geometries.
|
5 |
CMC Modelling of Enclosure FiresCleary, Matthew John January 2005 (has links)
This thesis describes the implementation of the conditional moment closure (CMC) combustion model in a numerical scheme and its application to the modelling of enclosure fires. Prediction of carbon monoxide (CO) in the upper smoke layer of enclosure fires is of primary interest because it is a common cause of death. The CO concentration cannot be easily predicted by empirical means, so a method is needed which models the chemistry of a quenched, turbulent fire plume and subsequent mixing within an enclosed space. CMC is a turbulent combustion model which has been researched for over a decade. It has provided predictions of major and minor species in jet diffusion flames. The extension to enclosure fires is a new application for which the flow is complex and temperatures are well below adiabatic conditions. Advances are made in the numerical implementation of CMC. The governing combustion equations are cast in a conserved, finite volume formulation for which boundary conditions are uniquely defined. Computational efficiency is improved through two criteria which allow the reduction in the size of the computational domain without any loss of accuracy. Modelling results are compared to experimental data for natural gas fires burning under a hood. Comparison is made in the recirculating, post-flame region of the flow where temperatures are low and reactions are quenched. Due to the spatial flux terms contained in the governing equations, CMC is able to model the situation where chemical species are produced in the high temperature fire-plume and then transported to non-reacting regions. Predictions of CO and other species are in reasonable agreement with the experimental data over a range of lean and rich hood-fire conditions. Sensitivity of results to chemistry, temperature and modelling closures is inves- tigated. Species predictions are shown to be quite different for the two detailed chemical mechanisms used. Temperature conditions within the hood effect the for- mation of species in the plume prior to quenching and subsequently species predic- tions in the post-flame region are also effected. Clipped Gaussian and ß-function probability density functions (PDFs) are used for the stochastic mixture fraction. Species predictions in the plume are sensitive to the form of the PDF but in the post-flame region, where the ß-function approaches a Gaussian form, predictions are relatively insensitive. Two models are used for the conditional scalar dissipation: a uniform model, where the conditional quantity is set equal to the unconditional scalar dissipation across all mixture fraction space; and a model which is consistent with the PDF transport equation. In the plume, predictions of minor species are sensitive to the modelling used, but in the recirculating, post-flame region species are not significantly effected.
|
6 |
An Approximation for the Twenty-One-Moment Maximum-Entropy Model of Rarefied Gas DynamicsGiroux, Fabien 23 November 2023 (has links)
The use of moment-closure methods to predict continuum and moderately rarefied flow offers
many modelling and numerical advantages over traditional methods. The maximum-entropy
family of moment closures offers models described by hyperbolic systems of balance
laws. In particular, the twenty-one moment model of the maximum-entropy hierarchy offers a
hyperbolic treatment of viscous flows exhibiting heat transfer. This twenty-one moment
model has the ability to provide accurate solutions where the Navier-Stokes equations lose
physical validity due to the solution being too far from local equilibrium. Furthermore,
its first-order hyperbolic nature offers the potential for improved numerical accuracy as
well as a decreased sensitivity to mesh quality. Unfortunately, higher-order
maximum-entropy closures cannot be expressed in closed form. The only known affordable
option is to propose approximations. Previous approximations to the fourteen-moment
maximum-entropy model have been proposed [McDonald and Torrilhon,
2014]. Although this fourteen-moment model also predicts viscous flow with heat
transfer, the necessary moments to close the system renders it more difficult to
approximate accurately than the twenty-one moment model. The proposed approximation for
the fourteen-moment model also has realizable states for which hyperbolicity is lost.
Unfortunately, the velocity distribution function associated with the twenty-one moment
model is an exponential of a fourth-order polynomial. Such a function cannot be integrated
in closed form, resulting in closing fluxes that can only be obtained through complex
numerical methods. The goal of this work is to present a new approximation to the closing
fluxes that respect the maximum-entropy philosophy as closely as possible. Preliminary
results show that a proposed approximation is able to provide shock predictions that are
in good agreement with the Boltzmann equation and surpassing the prediction of the
Navier-Stokes equations. Furthermore, Couette flow results as well as lid-driven cavity
flows are computed using a novel approach to Knudsen layer boundary conditions. A
dispersion analysis as well as an investigation of the hyperbolicity of the model is also
shown. The Couette flow results are compared against Navier-Stokes and the free-molecular
analytical solutions for a varying Knudsen number, for which the twenty-one moment model
show good agreement over the domain. The shock-tube problem is also computed for different
Knudsen numbers. The results are compared with the one obtained by directly solving the BGK
equation. Finally, the lid-driven cavity flow computed with the twenty-one moment model
shows good agreement with the direct simulation Monte-Carlo (DSMC) solution.
|
7 |
Direct quadrature conditional moment closure for turbulent non-premixed combustionAli, Shaukat January 2014 (has links)
The accurate description of the turbulence chemistry interactions that can determine chemical conversion rates and flame stability in turbulent combustion modelling is a challenging research area. This thesis presents the development and implementation of a model for the treatment of fluctuations around the conditional mean (i.e., the auto-ignition and extinction phenomenon) of realistic turbulence-chemistry interactions in computational fluid dynamics (CFD) software. The wider objective is to apply the model to advanced combustion modelling and extend the present analysis to larger hydrocarbon fuels and particularly focus on the ability of the model to capture the effects of particulate formation such as soot. A comprehensive approach for modelling of turbulent combustion is developed in this work. A direct quadrature conditional moment closure (DQCMC) method for the treatment of realistic turbulence-chemistry interactions in computational fluid dynamics (CFD) software is described. The method which is based on the direct quadrature method of moments (DQMOM) coupled with the Conditional Moment Closure (CMC) equations is in simplified form and easily implementable in existing CMC formulation for CFD code. The observed fluctuations of scalar dissipation around the conditional mean values are captured by the treatment of a set of mixing environments, each with its pre-defined weight. In the DQCMC method the resulting equations are similar to that of the first-order CMC, and the “diffusion in the mixture fraction space” term is strictly positive and no correction factors are used. Results have been presented for two mixing environments, where the resulting matrices of the DQCMC can be inverted analytically. Initially the DQCMC is tested for a simple hydrogen flame using a multi species chemical scheme containing nine species. The effects of the fluctuations around the conditional means are captured qualitatively and the predicted results are in very good agreement with observed trends from direct numerical simulations (DNS). To extend the analysis further and validate the model for larger hydrocarbon fuel, the simulations have been performed for n-heptane flame using detailed multi species chemical scheme containing 67 species. The hydrocarbon fuel showed improved results in comparison to the simple hydrogen flame. It suggests that higher hydrocarbons are more sensitive to local scalar dissipation rate and the fluctuations around the conditional means than the hydrogen. Finally, the DQCMC is coupled with a semi-empirical soot model to study the effects of particulate formation such as soot. The modelling results show to predict qualitatively the trends from DNS and are in very good agreement with available experimental data from a shock tube concerning ignition delays time. Furthermore, the findings suggest that the DQCMC approach is a promising framework for soot modelling.
|
8 |
Ignition Delay of Non-Premixed Methane-Air Mixtures using Conditional Moment Closure (CMC)El Sayed, Ahmad 09 1900 (has links)
Autoignition of non-premixed methane-air mixtures is investigated using first-order Conditional Moment closure (CMC). In CMC, scalar quantities are conditionally averaged with respect to a conserved scalar, usually the mixture fraction. The conditional fluctuations are often of small order, allowing the chemical source term to be modeled as a function of the conditional species concentrations and the conditional enthalpy (temperature). The first-order CMC derivation leaves many terms unclosed such as the conditional scalar dissipation rate, velocity and turbulent fluxes, and the probability density function. Submodels for these quantities are discussed and validated against Direct Numerical Simulations (DNS). The CMC and the turbulent velocity and mixing fields calculations are decoupled based on the frozen mixing assumption, and the CMC equations are cross-stream averaged across the flow following the shear flow approximation. Finite differences are used to discretize the equations, and a two-step fractional method is implemented to treat separately the stiff chemical source term. The stiff ODE solver LSODE is used to solve the resulting system of equations. The recently developed detailed chemical kinetics mechanism UBC-Mech 1.0 is employed throughout this study, and preexisting mechanisms are visited. Several ignition criteria are also investigated. Homogeneous and inhomogeneous CMC calculations are performed in order to investigate the role of physical transport in autoignition. Furthermore, the results of the perfectly homogeneous reactor calculations are presented and the critical value of the scalar dissipation rate for ignition is determined. The results are compared to the shock tube experimental data of Sullivan et al. The current results show good agreement with the experiments in terms of both ignition delay and ignition kernel location, and the trends obtained in the experiments are successfully reproduced. The results were shown to be sensitive to the scalar dissipation model, the chemical kinetics, and the ignition criterion.
|
9 |
Ignition Delay of Non-Premixed Methane-Air Mixtures using Conditional Moment Closure (CMC)El Sayed, Ahmad 09 1900 (has links)
Autoignition of non-premixed methane-air mixtures is investigated using first-order Conditional Moment closure (CMC). In CMC, scalar quantities are conditionally averaged with respect to a conserved scalar, usually the mixture fraction. The conditional fluctuations are often of small order, allowing the chemical source term to be modeled as a function of the conditional species concentrations and the conditional enthalpy (temperature). The first-order CMC derivation leaves many terms unclosed such as the conditional scalar dissipation rate, velocity and turbulent fluxes, and the probability density function. Submodels for these quantities are discussed and validated against Direct Numerical Simulations (DNS). The CMC and the turbulent velocity and mixing fields calculations are decoupled based on the frozen mixing assumption, and the CMC equations are cross-stream averaged across the flow following the shear flow approximation. Finite differences are used to discretize the equations, and a two-step fractional method is implemented to treat separately the stiff chemical source term. The stiff ODE solver LSODE is used to solve the resulting system of equations. The recently developed detailed chemical kinetics mechanism UBC-Mech 1.0 is employed throughout this study, and preexisting mechanisms are visited. Several ignition criteria are also investigated. Homogeneous and inhomogeneous CMC calculations are performed in order to investigate the role of physical transport in autoignition. Furthermore, the results of the perfectly homogeneous reactor calculations are presented and the critical value of the scalar dissipation rate for ignition is determined. The results are compared to the shock tube experimental data of Sullivan et al. The current results show good agreement with the experiments in terms of both ignition delay and ignition kernel location, and the trends obtained in the experiments are successfully reproduced. The results were shown to be sensitive to the scalar dissipation model, the chemical kinetics, and the ignition criterion.
|
10 |
Computation of unsteady and non-equilibrium turbulent flows using Reynolds stress transport modelsAl-Sharif, Sharaf January 2010 (has links)
In this work the predictive capability of a number of Reynolds stress transport(RST) models was first tested in a range of non-equilibrium homogeneous flows, comparisons being drawn with existing direct numerical simulation (DNS) results and physical measurements. The cases considered include both shear and normally strained flows, in some cases with a constant applied strain rate, and in others where this varied with time. Models were generally found to perform well in homogeneous shear at low shear rates, but their performance increasingly deteriorated at higher shear rates. This was attributed mainly to weaknesses in the pressure-strain rate models, leading to over-prediction of the shear stress component of the stress anisotropy tensor at high shear rates. Performance in irrotational homogeneous strains was generally good, and was more consistent over a much wider range of strain rates. In the experimental plane strain and axisymmetric contraction cases, with time-varying strain rates, there was evidence of an accelerated dissipation rate generation. Significant improvement was achieved through the use of an alternative dissipation rate generation term, Pε , in these cases, suggesting a possible route for future modelling investigation. Subsequently, the models were also tested in the inhomogeneous case of pulsating channel flow over a wide range of frequencies, the reference for these cases being the LES of Scotti and Piomelli (2001). A particularly challenging feature in this problem set was the partial laminarisation and re-transition that occurred cyclically at low and, to a lesser extent, intermediate frequencies. None of the models tested were able to reproduce correctly all of the observed flow features, and none returned consistently superior results in all the cases examined. Finally, models were tested in the case of a plane jet interacting with a rectangular dead-end enclosure. Two geometric configurations are examined, corresponding a steady regime, and an intrinsically unsteady regime in which periodic flow oscillations are experimentally observed (Mataoui et al., 2003). In the steady case generally similar flow patterns were returned by the models tested, with some differences arising in the degree of downward deflection of the impinging jet, which in turn affected the level of turbulence energy developing in the lower part of the cavity. In the unsteady case, only two of the models tested, a two-equation k-ε model and an advanced RST model, correctly returned purely periodic solutions. The other two RST models, based on linear pressure-strain rate terms, returned unsteady flow patterns that exhibited complex oscillations with significant cycle-to-cycle variations. Unfortunately, the limited availability of reliable experimental data did not allow a detailed quantitative examination of model performance.
|
Page generated in 0.0716 seconds