• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance evaluation of intrinsic bioremediation on the treatment of petroleum-hydrocarbon contaminated groundwater

Lee, Ya-Chuan 30 June 2011 (has links)
Accidental spills of hydrocarbons from underground storage tanks or pipelines are a common cause of subsurface contamination. Anthropogenic hydrocarbon contamination of soil is a global issue throughout the industrialised world. In England and Wales alone, 12% of all serious contamination incidents in 2007 were hydrocarbon related. Biodegradation could be in situ process leading to a decrease of benzene concentrations in groundwater. Recently, monitored natural attenuation has become an effective alternative to the more active remediation methods for the in situ treatment of contaminated subsurface environments. The main objective of this study was to examine the possibility of adopting monitored natural attenuation as a remediation technique for the contaminated groundwater aquifer. In this natural attenuation study, the following tasks were conducted bioremediation investigation, biological first-order decay rates, Mann-Kendall Test model and BIOSCREEN model for the contaminated groundwater aquifer. In this study, a full-scale natural bioremediation investigation was conducted at a petroleum hydrocarbon spill site. In this study, The calculated biodegradation capacity (8.261 mg/L) at this site is much higher than the detected concentrations of petroleum-hydrocarbons (3-4 mg/L) within the most contaminated area inside the plume. Thus, natural biodegradation should be able to remove the contaminants effectively. The calculated biological first-order decay rates for benzene were between 1.7¡Ñ10-3-9.0¡Ñ10-4 day-1 respectively. Mann-Kendall test was applied to analyze the trend of contaminant variations. Results show that the S-value of monitor wells SW-1W, SW-4W, SW-42W, SW-23W, SW-30W, SW-67W and SW-70W were -2.23607, -1.16276, -1.52053, -1.34164, -1.26323, 0 and -1.34164, respectively. The negative S values reveal that the all contaminants tended to decrease. This indicates that the hydrocarbon plume at this site is not expanding, and has been contained effectively by the natural attenuation mechanisms. BIOSCREEN model from the groundwater analyses indicate, a first-order decay model reached the downgradient monitor well located 220 m from the spill location. that approximately 89% of the contaminate removal was due to biodegradation processes. The study of petroleum-hydrocarbons bacterial consortium were include Aquincola tertiaricarbonis L10¡BBosea sp. GR060219¡BBrachymonas petroleovorans strain CHX¡BHydrogenophaga sp. p3(2011)¡BHydrogenophaga sp.¡BMethylibium sp. YIM 61602¡BMycobacterium sp.¡BRhodoferax sp. IMCC1723¡BRhodoferax sp.¡BUncultured Rhodocyclaceae bacterium clone Elev_16S_975¡BUncultured Rhodocyclaceae bacterium clone eub62B1¤ÎUncultured Beggiatoa sp. clone GE7GXPU01BJTWR. Thus, the in situ bioremediation technology has the potential to be developed into an environmentally, economically and naturally acceptable remediation technology. Evidences for the occurrence of natural attenuation include the following: (1) depletion of dissolved oxygen, nitrate, and sulfate; (2) production of dissolved ferrous iron, sulfide, and CO2; (3) decreased BTEX concentrations and BTEX as carbon to TOC ratio along the transport path; (4) increased alkalinity and microbial species; (5) limited spreading of the BTEX plume; and (6) preferential removal of certain BTEX components along the transport path. Results indicate that natural attenuation can effectively contain the plume, and biodegradation processes played an important role on contaminant removal.
2

Application of monitored natural attenuation to remediate petroleum-hydrocarbon contaminated groundwater

Kuo, Ya-lin 29 August 2006 (has links)
Contamination of groundwater by petroleum-hydrocarbons is a serious environmental problem. Monitored natural attenuation (MNA) is a passive remedial approach to degrade and dissipate contaminants in groundwater. In this study, a full-scale natural bioremediation investigation was conducted at a gasoline spill site. Results show that the concentrations of major contaminants [benzene, toluene, ethylbenzene, and xylenes (BTEX)] dropped to below detection limit before they reached the downgradient monitor well. This indicates that natural biodegradation process was the major cause of the contaminant reduction. In this study, 1,2,4-trimethylbenzene (1,2,4-TMB) was used as tracer to calculate the biological decay rates of BTEX. The calculated biological first-order decay rates for ethylbenzene, m+p-xylene, toluene, benzene, and o-xylene were 1.5¡Ñ10-3, 1.2¡Ñ10-3, 7.0¡Ñ10-4, 6.7¡Ñ10-4, and 1.2¡Ñ10-4, respectively. Mann-Kendall test was applied to analyze the trend of contaminant variations. Results show that the S-value of four monitor wells (CT-4, CT-41, CT-42, and CT-7) were -0.52, -1.57, -0.52, and -1.22, respectively. The negative S values reveal that the all contaminants tended to decrease. This indicates that the hydrocarbon plume at this site is not expanding, and has been contained effectively by the natural attenuation mechanisms. Evidences for the occurrence of natural attenuation include the following: (1) depletion of dissolved oxygen, nitrate, and sulfate; (2) production of dissolved ferrous iron, sulfide, and CO2; (3) decreased BTEX concentrations and BTEX as carbon to TOC ratio along the transport path; (4) increased alkalinity and microbial species; (5) limited spreading of the BTEX plume; and (6) preferential removal of certain BTEX components along the transport path. Results also show that the biodegradation capacity (46.02 mg/L) for BTEX and 1,2,4-TMB was much higher than the detected contaminants within the plume. Results indicate that natural attenuation can effectively contain the plume, and biodegradation processes played an important role on contaminant removal.
3

Computational Tools for Improved Analysis and Assessment of Groundwater Remediation Sites

Joseph, Joshua Allen Jr. 06 August 2008 (has links)
Remediation of contaminated groundwater remains a high-priority national goal in the United States. Water is essential to life, and new sources of water are needed for an expanding population. Groundwater remediation remains a significant technical challenge despite decades of research into this field. New approaches are needed to address the most severely-polluted aquifers, and cost-effective solutions are required to meet remediation objectives that protect human health and the environment. Source reduction combined with Monitored Natural Attenuation (MNA) is a remediation strategy whereby the source of contamination is aggressively treated or removed and the residual groundwater plume depletes due to natural processes in the subsurface. The USEPA requires long-term performance monitoring of groundwater at MNA sites over the remediation timeframe, which often takes decades to complete. Presently, computational tools are lacking to adequately integrate source remediation with economic models. Furthermore, no framework has been developed to highlight the tradeoff between the degree of remediation versus the level of benefit within a cost structure. Using the Natural Attenuation Software (NAS) package developed at Virginia Tech, a set of formulae have been developed for calculating the TOR for petroleum-contaminated aquifers (specifically tracking benzene and MTBE) through statistical techniques. With the knowledge of source area residual saturation, groundwater velocity, and contaminant plume source length, the time to remediate a site contaminated with either benzene or MTBE can be determined across a range of regulatory maximum contaminant levels. After developing formulae for TOR, an integrated and interactive decision tool for framing the decision analysis component of the remediation problem was developed. While MNA can be a stand-alone groundwater remediation technology, significant benefits may be realized by layering a more traditional source zone remedial technique with MNA. Excavation and soil vapor extraction when applied to the front end of a remedial action plan can decrease the amount of time to remediation and while generally more expensive than an MNA-only approach, may accrue long-term economic advantages that would otherwise be foregone. The value of these research components can be realized within the engineering and science communities, as well as through government, business and industry, and communities where groundwater contamination and remediation are of issue. Together, these tools constitute the Sâ ªEâ ªEâ ªPâ ªAGE paradigm, founded upon the concept of sound science for an environmental engineering, effectual economics, and public policy agenda. The TOR formulation simplifies the inputs necessary to determine the number of years that an MNA strategy will require before project closure and thus reduces the specialized skills and training required to perform a numerical analysis that for one set of conditions could require many hours of simulation time. The economic decision tool, that utilizes a life cycle model to evaluate a set of feasible alternatives, highlights the tradeoffs between time and economics can be realized over the lifetime of the remedial project. / Ph. D.

Page generated in 0.1405 seconds