• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AFLP Marker Analysis Of Monoploid Potato

Varrieur, John Michael 29 May 2002 (has links)
Potato haploids have been recent components in protoplast fusion research, strategies to combine wild and cultivated potato germplasm and the generation of economically valuable mutant phenotypes. Additionally, most major genetic mapping and QTL analyses in potato have utilized haploid germplasm to simplify linkage-mapping computations. The accuracy of genetic assumptions concerning the randomness and genetic purity of haploid genomes may directly affect the statistical validity of many results in current potato research. In the present study, AFLP analysis was conducted on two sibling S. phureja "BARD 1-3" monoploid populations derived by androgenesis in anther culture, and gynogenesis through the use of a haploid-inducing pollinator, S. phureja "IVP 101." Little indication of somaclonal variation and haploid-inducer gene introgression was found in the monoploid band data suggesting genomic stability. Segregation of marker alleles that were heterozygous in the parent was distorted from the expected 1:1 ratio in both populations, ranging from 35% in the gynogenic monoploids (GM) to 46% in the androgenic monoploids (AM). Genetic diversity appeared more random among the monoploid populations after skewed marker data was removed from phylogenetic analyses. Bilateral and unilateral marker skewness in the monoploid populations may respectively indicate common and unique segregation distorting loci (SDL) present in the AM and GM genomes. Representatives of both SDL types were located on a partial linkage map created using androgenic monoploid data. / Master of Science
2

Protoplast Fusion for the Production of Intermonoploid Somatic Hybrids in Cultivated Potato

Johnson, Alexander Arthur Theodore 15 October 1998 (has links)
Monoploid potato genotypes represent plant material that is free from the "genetic load" of lethal and severely deleterious alleles normally present in the highly heterozygous cultivated potato species. Field evaluations enabled the identification of agronomically superior monoploid potato genotypes from a population of more than 100 anther-derived monoploids. Chemical fusion and electrofusion between pairs selected from 31 superior monoploids resulted in the production of three different groups of intermonoploid somatic hybrids. The hybridity of somatic hybrid plants and calluses was confirmed through PCR-based amplification of simple sequence repeat (SSR) sequences in the potato genome. Polymorphic SSR loci between the monoploid parents of a particular group of somatic hybrids were used to separate true somatic hybrids (heterozygous at the loci) from parental somaclones regenerating from unfused protoplasts (homozygous for one parental band at the loci). One group of somatic hybrids (SH1, SH2 and SH2B) was of particular interest because it resulted from the fusion of a S. phureja monoploid to a high acetylleptinidine-producing monoploid derived from an F1 hybrid between S. chacoense and S. phureja. The leptine acetylleptinidine (ALD) is produced only by some accessions of S. chacoense Bitt. and provides resistance to feeding by the Colorado potato beetle (Leptinotarsa decemlineata Say) when present in sufficient concentrations. The somatic hybrids produced moderate levels of ALD in leaves and stems (roughly 60% that of a high ALD-producing S. chacoense clone). Pollinations of SH1, SH2 and SH2B by several diploid and tetraploid potato clones resulted in three fruit on SH2, one fruit on SH2B and no fruit on SH1. Two resulting progeny populations of SH2 [SH2A = SH2 × S. andigena 8-1 (4x); SH2P = SH2 × S. phureja 66AP11-53 (2x)] expressed higher fertility than the original somatic hybrids and were sexually crossed as both male and female parents to S. tuberosum cv. Atlantic. All of the SH2 progeny populations expressed acetylleptinidines, albeit at lower levels than the SH2 somatic hybrid, providing strong evidence that the genes controlling acetylleptinidine production are dominant. Variation for ALD expression in the SH2 progeny indicated one or a few genes with additive effect controlling the ALD trait. In addition, the choice of male parent in sexual crosses to SH2 affected subsequent ALD expression in progeny populations. The SH2 progeny represent an important first step towards transferring acetylleptinidines to cultivated potato. SH1, SH2 and SH2B appeared to be negatively affected by an unusually high ploidy (hexaploid, 6x). Field-grown plants produced many tubers (mean = 35) of low weight (mean = 10.4 g) and were stunted in appearance. Anther culture of SH2 yielded triploid regenerants (3x). These regenerants may be more phenotypically normal than the original somatic hybrids because of lower ploidy. Segregation of SSR alleles in the triploid anther culture regenerants provided evidence that the hexaploid somatic hybrid SH2 genome is comprised of four homologous genomes of CP2-103 (the high leptine-producing monoploid) and two homologous genomes of 13-14 203 (the S. phureja monoploid). / Master of Science
3

Development of intermonoploid somatic hybrids of potato and their molecular analysis based on polymorphism for retroelement Tst1

Lightbourn, Gordon James 13 September 2004 (has links)
Inbred lines for hybrid crop production have been a mainstay of plant breeding. Biotechnological approaches to hasten the process are available including anther culture to halve the genome and protoplast fusion to create hybrids between incompatible partners. We applied these techniques to potato to evaluate their potential for breeding highly heterozygous, cross-pollinating species. Four families of monoploids (2n=1x=12), developed from diploid hybrids with diverse genomic constitutions but heavily favoring Solanum phureja, a primitive cultivated potato, were used in electrofusion experiments to create intermonoploid somatic hybrids (SH). The "monoploid sieve" results in the survival of only those gametes free of lethal and deleterious genes but generates sterile sporophytes, necessitating protoplast fusion for SH development. From six intermonoploid electrofusion combinations, 276 plants were regenerated over 6-9 months. Fusion conditions were optimized. Ploidy was determined by flow-cytometry and SH confirmed by microsatellite analysis. Field evaluations over three years revealed that intermonoploid SH were inferior to cultivars. Dihaploids derived by anther culture of a tetraploid intermonoploid SH were reduced in vigor with an increase in homozygosity, while 2x X 2x sexually derived populations had better yield than the SH, suggesting that producing SH introduced or eliminated factors required for productivity. Molecular analysis of the SH was conducted to examine genomic stability through protoplast isolation and plant regeneration. Sequence specific amplified polymorphism (S-SAP) represents a hybrid system incorporating amplified fragment length polymorphism (AFLP) technology in conjunction with the use of a defined genomic sequence, e.g., retrotransposon display (RD) when the defined sequence is anchored into a consensus sequence of a retrotransposon such as the long terminal repeat (LTR) sequence of Tst1. Parental monoploids, SH and various Solanaceae were evaluated by RD. Fluorescently-labeled retrotransposon-based primers were used in the ALFexpress automated fragment analyzer system. Eleven probes from RD were created for Southern blot analysis and used to verify taxonomic relationships between selected Solanaceae. Blots of intermonoploid somatic hybrids confirmed hybridity and occasional loss of genomic fragments. No activation or replication of retrotransposons was detected. Sequencing of inter-retrotransposon amplified polymorphism (IRAP) and S-SAP fragments revealed that all fragments had the expected Tst1 retroelement and/or the AFLP adaptor sequence. BLAST analysis identified 4 of the 17 fragments sequenced as part of the chloroplast genome, a tobacco anther-specific gene, repetitive DNA, and the phytochrome F gene. / Ph. D.

Page generated in 0.0259 seconds