• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of the Moore rearrangement to the synthesis of 1,4-dioxygenated xanthones and efforts toward the total synthesis of lundurine B

Nichols, Alexander Lindsey 31 January 2013 (has links)
A novel application of the Moore rearrangement was successfully developed and applied to the synthesis of 1,4-dioxygenated xanthones that would have been difficult to obtain otherwise. The 1,4-dioxygenated xanthone moiety is found in several naturally occurring, biologically active compounds. Several methods by which to obtain the 1,4-dioxygenated xanthone core have been reported; however, high step counts, low yields, and harsh reaction conditions preclude the use of these methods to complex xanthone natural products. Using the Moore rearrangement as a key step in the synthetic sequence has allowed us to prepare several xanthone natural products quickly and more efficiently than what is possible with the prior art. Using the Martin group’s prior experience with the application of ring closing metathesis (RCM) to the field of alkaloid natural product synthesis, the preparation of lundurine B was undertaken. Key features of the proposed synthesis to lundurine B include the formation of a cyclopropane ring by the formation pyrazoline intermediate via [3+2] dipolar cycloaddition followed by dinitrogen extrusion. A second key step in the proposed sequence to lundurine B is a double RCM to form a five- and eight-membered ring in a single operation. While double RCM strategies have been applied to several elegant natural product syntheses, the formation of a five- and eight-membered ring in a single sequence has not been reported. Should the double RCM strategy prove successful for lundurine B, the conditions could in principle be applied to other structurally related natural products. / text

Page generated in 0.0643 seconds