• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Morfologie van die vroulike strobilus en embriologie van die genus Podocarpus L'Herit. ex Pers. in Suid-Afrika

Schoonraad, Elzabe January 1977 (has links)
No abstract available. / Thesis (PhD)--University of Pretoria, 1977. / gm2014 / Plant Science / unrestricted
2

Single pixel robust approach for background subtraction for fast people-counting and direction estimation

Adegboye, Adedolapo Olaide 10 June 2013 (has links)
People counting system involves the process of counting and estimating the number of people in a scene. The counting system has a number of useful applications, ranging from pedestrian traffic surveillance and monitoring the number of people that enters and leaves shopping malls to commercial buildings, vehicles and a number of other security-related applications. Over the years, significant progress has been made. However, people counting systems still have not overcome a number of challenges such as occlusions, human pose and direction, multiple people detection, varying lighting and weather conditions. The aim of this research is to present an optimal solution that is invariant to the challenges. That is, the outcome of the results will not be affected by the challenges. Also, the solution will handle the trade-off between the counting accuracy and the time it takes to implement the counting process. As a result, a new background subtraction method known as single pixel method is proposed. This is where useful features are collected from each scene using frame difference method. Then, these features are reduced into single pixels. The single pixels are then used to estimate the total number of people in the scene. Furthermore, a virtual-line direction-estimation method is presented where the directions in which the people are heading are estimated prior to counting. AFRIKAANS : Mense-telstelsels behels die proses van die tel en die beraming van die aantal mense op ’n toneel. Die telstelsel het ’n aantal nuttige toepassings wat wissel van voetgangerverkeer toesig en die monitering van die aantal mense wat binnekom en verlaat tot winkelsentrums, kommersiële geboue, voertuie, en ’n aantal ander sekuriteit-verwante programme. Oor die jare is beduidende vordering gemaak. Daar is egter ’n aantal uitdagings wat mense-telstelsels nog nie oorkom het nie, soos afsluiting, menslike inhou en rigting, die opsporing van veelvoudige mense, wisselende beligting en weerstoestande. Die doel van hierdie navorsing is om ’n optimale oplossing aan te bied, wat invariant is teen die uitdagings. Met ander woorde, die uitdagings sal nie die resultate affekteer nie. Die oplossing sal ook die uitruil tussen die tel akkuraatheid en die implementeringstyd van die telproses hanteer. As gevolg hiervan, is ’n nuwe agtergrondaftrekkingsmetode, wat bekend staan as ’n enkele beeldelement metode, voorgestel. Dit is waar die nuttige funksies van elke toneel, met behulp van die raamverskilmetode ingesamel word. Dan word hierdie eienskappe in enkele beeldelemente verminder. Die enkele beeldelemente word dan gebruik om die totale aantal mense in die toneel te skat. Verder is daar van ’n virtuele-lyn rigting-skatting metode gebruik gemaak wat die rigtings waarin die mense beweeg vooraf beraam. / Dissertation (MEng)--University of Pretoria, 2013. / Electrical, Electronic and Computer Engineering / unrestricted
3

Modelling the evolution of pulsar wind nebulae / Michael Johannes Vorster

Vorster, Michael Johannes January 2014 (has links)
This study focusses on modelling important aspects of the evolution of pulsar wind nebulae using two different approaches. The first uses a hydrodynamic model to simulate the morphological evolution of a spherically-symmetric composite supernova remnant that is expanding into a homogeneous interstellar medium. In order to extend this model, a magnetic field is included in a kinematic fashion, implying that the reaction of the fluid on the magnetic field is taken into account, while neglecting any counter-reaction of the field on the fluid. This approach is valid provided that the ratio of electromagnetic to particle energy in the nebula is small, or equivalently, for a large plasma β environment. This model therefore allows one to not only calculate the evolution of the convection velocity but also, for example, the evolution of the average magnetic field. The second part of this study focusses on calculating the evolution of the energy spectra of the particles in the nebula using a number of particle evolution models. The first of these is a spatially independent temporal evolution model, similar to the models that can be found in the literature. While spatially independent models are useful, a large part of this study is devoted to developing spatially dependent models based on the Fokker-Planck transport equation. Two such models are developed, the first being a spherically-symmetric model that includes the processes of convection, diffusion, adiabatic losses, as well as the non-thermal energy loss processes of synchrotron radiation and inverse Compton scattering. As the magnetic field geometry can lead to the additional transport process of drift, the previous model is extended to an axisymmetric geometry, thereby allowing one to also include this process. / PhD (Space Physics), North-West University, Potchefstroom Campus, 2014
4

Modelling the evolution of pulsar wind nebulae / Michael Johannes Vorster

Vorster, Michael Johannes January 2014 (has links)
This study focusses on modelling important aspects of the evolution of pulsar wind nebulae using two different approaches. The first uses a hydrodynamic model to simulate the morphological evolution of a spherically-symmetric composite supernova remnant that is expanding into a homogeneous interstellar medium. In order to extend this model, a magnetic field is included in a kinematic fashion, implying that the reaction of the fluid on the magnetic field is taken into account, while neglecting any counter-reaction of the field on the fluid. This approach is valid provided that the ratio of electromagnetic to particle energy in the nebula is small, or equivalently, for a large plasma β environment. This model therefore allows one to not only calculate the evolution of the convection velocity but also, for example, the evolution of the average magnetic field. The second part of this study focusses on calculating the evolution of the energy spectra of the particles in the nebula using a number of particle evolution models. The first of these is a spatially independent temporal evolution model, similar to the models that can be found in the literature. While spatially independent models are useful, a large part of this study is devoted to developing spatially dependent models based on the Fokker-Planck transport equation. Two such models are developed, the first being a spherically-symmetric model that includes the processes of convection, diffusion, adiabatic losses, as well as the non-thermal energy loss processes of synchrotron radiation and inverse Compton scattering. As the magnetic field geometry can lead to the additional transport process of drift, the previous model is extended to an axisymmetric geometry, thereby allowing one to also include this process. / PhD (Space Physics), North-West University, Potchefstroom Campus, 2014

Page generated in 0.0584 seconds