• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Temperature Effects on Vector-Borne Disease Dynamics

El Moustaid, Fadoua 09 September 2019 (has links)
Vector-borne diseases (VBDs) cause significant harm to humans, plants, and animals worldwide. For instance, VBDs are very difficult to manage, as they are governed by complex interactions. VBD transmission depends on the pathogen itself, vector-host movement, and environmental conditions. Mosquito-borne diseases are a perfect example of how all these factors contribute to changes in VBD dynamics. Although vectors are highly sensitive to climate, modeling studies tend to ignore climate effects. Here, I am interested in the arthropod small vectors that are sensitive to climate factors such as temperature, precipitation, and drought. In particular, I am looking at the effect of temperature on vector traits for two VBDs, namely, dengue, caused by a virus that infects humans and bluetongue disease, caused by a virus that infects ruminants. First, I collect data on mosquito traits' response to temperature changes, this includes adult traits as well as juvenile traits. Next, I use these traits to model mosquito density, and then I incorporate the density into our mathematical models to investigate the effect it has on the basic reproductive ratio R0, a measure of how contagious the disease is. I use R0 to determine disease risk. For dengue, my results show that using mosquito life stage traits response to temperature improves our vector density approximation and disease risk estimates. For bluetongue, I use midge traits response to temperature to show that the suitable temperature for bluetongue risk is between 21.5 °C and 30.7 °C. These results can inform future control and prevention strategies. / Doctor of Philosophy / Infectious diseases are a type of illness that occurs when microorganisms spread between hosts. Some infectious diseases are directly transmitted and some require indirect transmission such as vector-borne diseases (VBDs). Each VBD requires the presence of a vector for the disease to be transmitted. For example, dengue that puts 40% of the world population at risk, requires mosquitoes to transmit the disease between humans. My research aims to investigate how the main climate factor, temperature, influences the spread of VBDs. I develop mathematical and statistical models that explain the effect of temperature on vector traits of a mosquito-borne disease (dengue) and a midge-borne disease (bluetongue) and investigate modeling formulas to improve our estimates for dengue mosquito densities. My results can be used to inform future prevention and control strategies.
2

Avian malaria associations with British mosquitoes

Alves, R. O. N. January 2012 (has links)
Avian malaria (Plasmodium spp.) is a popular model system to study the ecology and evolution of parasite-host-vector interactions in the wild. These studies have historically focused mostly on the avian hosts and the malaria parasites. Knowledge regarding the role of vectors is essential to our understanding of these wild systems, but has only very recently started to accumulate. This thesis aimed to contribute to this field by assessing mosquito-malaria-host associations for British mosquitoes and the role of mosquito ecology in shaping these parasite systems in a British woodland study site, using molecular, field ecology and statistical modelling methodologies. From the 12 mosquito species or species groups found, I showed that the Cx.pipiens/torrentium mosquito group is likely to have a major role in avian malaria transmission in Great Britain, while Cs. annulata may be transmitting P. circumflexum. I also demonstrated a positive spatial association between mosquito density per host and avian malaria prevalence, in accordance with theoretical expectations for malaria transmission. Findings here provide evidence that avian malaria transmission in British woodlands is limited mainly to June-August, being preceded by relapse of previous infections or, alternatively, by maintenance of chronic blood parasitaemia through the colder months; this agrees with theoretical expectations and findings elsewhere for temperate climates. This thesis also described local-scale spatial heterogeneity and seasonal variation in adult mosquito abundance within a British woodland where avian malaria is endemic, with differing patterns found between species or species groups. Spatially, variation in adult mosquito abundance was associated with microclimatic and landscape variables such as distances to mosquito breeding sites, microclimate and canopy height; seasonally, variation in mosquito abundance was associated with temperature and rainfall, alongside calendar date. The heterogeneity in mosquito parameters and associations with environmental variables found at a site where avian malaria is endemic highlights the need to anticipate such complexity when trying to understand Plasmodium transmission. By doing so, we further extend the potential of these parasite systems to improve our knowledge regarding the ecology and evolution of parasite-host-vector associations.

Page generated in 0.051 seconds