1 |
Designing a brushed DC motor controller : Laying the framework for a lab experiment involving position control with current feedbackFranzén, Björn January 2015 (has links)
In order to provide the means to set up a control theory lab experiment involving position control of a brushed DC motor with current feedback, a pulse-width modulated motor controller was designed. The output voltage is controlled by an analog reference signal and the magnitude of the output current and voltage are measured and output. These inputs and outputs are connected to a DAQ I/O-unit such that the lab experiment can be implemented digitally. In addition, defining equations for the whole system were derived. Comparison between measurements and model showed it possible to use the current as feedback if low-pass filtered and the angular displacement controlled over a small angular interval.
|
2 |
Estimation and Compensation of Load-Dependent Position Error in a Hybrid Stepper Motor / Estimering och kompensering av lastberoende positionsfel i en elektrisk stegmotorRonquist, Anton, Winroth, Birger January 2016 (has links)
Hybrid stepper motors are a common type of electric motor used throughout industry thanks to its low-cost, high torque at low speed and open loop positioning capabilities. However, a closed loop control is often required for industrial applications with high precision requirements. The closed loop control can also be used to lower the power consumption of the motor and ensure that stalls are avoided. It is quite common to utilise a large and costly position encoder or resolver to feedback the position signal to the control logic. This thesis has explored the possibility of using a low-cost position sensor based on Hall elements. Additionally, a sensorless estimation algorithm, using only stator winding measurements, has been investigated both as a competitive alternative and as a possible complement to the position sensor. The thesis work summarises and discusses previous research attempts to adequately measure or estimate and control the hybrid stepper motors position and load angle without using a typical encoder or resolver. Qualitative results have been produced through simulations prior to implementation and experimental testing. The readings from the position sensor is subject to noise, owing to its resolution and construction. The position signal has been successfully filtered, improving its accuracy from 0.56° to 0.25°. The output from the sensorless estimation algorithm is subject to non-linear errors caused by errors in phase voltage measurements and processing of velocity changes. However, the dynamics are reliable at constant speeds and could be used for position control.
|
Page generated in 0.0916 seconds