• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 504
  • 148
  • 130
  • 43
  • 30
  • 25
  • 22
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 8
  • 7
  • Tagged with
  • 1144
  • 434
  • 275
  • 182
  • 163
  • 145
  • 131
  • 122
  • 93
  • 88
  • 87
  • 80
  • 79
  • 79
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Novel direct field and torque control of six-phase induction machine with special phase current waveform

Ai, Yong-le 12 1900 (has links)
Thesis (PhD (Electric and Electronic Engineering))--University of Stellenbosch, 2006. / This study focuses on the drive control system of a novel direct field and torque current control applied to a six-phase induction motor. Special phase current waveforms that make it possible to have separate field and torque windings and currents in the motor are proposed. In this thesis the control of these field and torque windings to control directly the flux and torque of the motor is investigated. With the special phase current waveforms the performance of the six-phase induction motor is evaluated through theoretical and finite element analysis. In the analysis the air gap resultant field intensity and flux density produced by the stator field, stator torque and rotor currents are investigated. It is shown that with the special current waveforms a quasi-square shaped, smooth rotating air gap flux density is generated. This smooth rotating flux is important for proper induction motor operation. An equation for the electromagnetic torque is derived and used in the theoretical calculations. The ease of the torque performance calculations is conspicuous. An approximate magnetic circuit calculation method is developed to calculate the air gap flux density versus field current relationship taking magnetic saturation into account. The air gap MMF harmonics and the per phase self and mutual inductances are analysed and calculated using, amongst other things, winding functions. In the finite element analysis specific attention is given to the MMF balanced condition (zero quadrature flux condition) in the motor and the development of a per phase equivalent model. The drive system’s performance with the proposed direct control technique is verified by a developed Matlab simulation model and measurements on a small (2 kW) two-pole, six-phase induction motor drive under digital hysteresis current control. It is shown in the thesis that the calculated results from theoretical derived equations are in good agreement with finite element and measured results. This is particularly the case for the formulas of the MMF balanced constant (zero quadrature flux linkage constant) used in the control software. The results of the simulated and measured linear relationship between the torque and torque current show that MMF balance is maintained in the motor by the drive controller independent of the load condition. The direct control of the torque also explains the good measured dynamic performance found for the proposed drive.
382

A universal equivalent circuit for induction motors and its applications in machine analysis

Choy, Chang-tong, 蔡祥棠 January 1971 (has links)
published_or_final_version / Electrical Engineering / Master / Master of Science in Engineering
383

Novel method of improving squirrel cage induction motor performance by using mixed conductivity fabricated rotors (MCFR) / Constantin Danut Pitis

Pitis, Constantin Danut January 2006 (has links)
The ideal squirrel cage motor should have a varying rotor resistance; large at standstill, and decreasing as the speed rises. Overseas - designed high impedance rotors try to fulfil these conditions - mostly used are double cage rotors and die cast aluminium rotors. However, in the South African coal-mining industry these rotors recorded high rate failures with heavy financial losses. As a result, the need for an alternative rotor type that was able to comply with basic conditions ignored before appeared on the market: • Higher reliability with extended life expectancy • Lower total ownership costs • Easy re-manufacturing with components available on the market • Specific performance stability at competitive price. Over the years, only two principles were tacitly accepted in designing squirrel cage rotors: 1. For a single cage rotor, in a circumferential direction around the rotor the squirrel cage bars are placed in the same cylindrical shell, with the same shape and same conductivity. 2. For a double cage rotor, the same rule as above applies; however, in the radial direction, the bars have different shapes and typically different conductivities. The Invention is based on a new principle, i.e. "in a circumferential direction around the squirrel cage rotor, squirrel cage bars may have different conductivities and same shapes, or different conductivities and different shapes”. Mixed Conductivity Fabricated Rotors (MCFR) are designed and manufactured based on this new principle, and are able to withstand the harsh South African mining conditions. Since patented, the invention has been materialised in a set of special rotors powering continuous miners of a reputable coal-mining house, which was spending about R5 million annually on replacing specific imported die cast aluminium rotors only. Fully complying with the above-mentioned basic conditions, the patent offers a large variety of technical and economical advantages, increasing mining processes efficiency beyond expectations. The thesis describes the MCFR's design adaptability by altering the rotor design to meet the demands of a specific engineering application as a base line of drives design. The patent is part of the new South African trend of increasing processes efficiency. It offers large possibilities of designing dedicated motors with a positive impact on the South African economy. Some socio-economical advantages are worthy of considerable study: • Being locally manufactured, the MCFR may reduce the country's economical dependence. • Requiring no special expertise, the MCFR can be produced in any quantity and size without excessive investment. • The MCFR offers an alternative option (product interchangeability) on the market as well as sound competition (with export potential). • The patent ensures business sustainability conditions which diffuse financial constraints on motor manufacturers and end-users during the re-capitalisation process (very loaded in South African economic and industrial environment). / Thesis (Ph.D. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2007.
384

Chromosome territory position and active relocation in normal and Hutchinson-Gilford progeria fibroblasts

Mehta, Ishita Shailesh January 2009 (has links)
Radial chromosome positioning in interphase nuclei is non-random and can alter according to developmental, differentiation, proliferation or disease status. The aim of this thesis is to understand how chromosome re-positioning is elicited and to identify the nuclear structures that assist this re-localisation event. By positioning all human chromosomes in primary fibroblasts that have left the proliferative cell cycle, the study within this thesis has demonstrated that in cells made quiescent by reversible growth arrest, chromosome positioning is altered considerably. Upon removal of serum from the culture medium, chromosome re-positioning took less than 15 minutes, required energy and was inhibited by drugs affecting the polymerization of myosin and actin. The nuclear distribution of nuclear myosin 1β was dramatically different in quiescent cells as compared to proliferating cells. If the expression of nuclear myosin 1β was suppressed using interference RNA procedures the movement of chromosomes after 15 minutes in low serum was inhibited. When high serum was restored to the serum starved cultures chromosome repositioning was only evident after 24-36 hours that coincided with a return to a proliferating distribution of nuclear myosin 1β.
385

Chemical Partitioning and Resultant Effects on Structure and Electrical Properties in Co-Containing Magnetic Amorphous Nanocomposites for Electric Motors

DeGeorge, Vincent G. 01 April 2017 (has links)
chemical partitioning of Cobalt-containing soft magnetic amorphous and nanocomposite materials has been investigated with particular focus on its consequences on these materials’ nanostructure and electrical resistivity. Theory, models, experiment, and discussion in this regard are presented on this class of materials generally, and are detailed in particular on alloys of composition, (Fe65Co35)79.5+xB13Si2Nb4-xCu1.5, for X={0- 4at%}, and Co-based, Co76+YFe4Mn4-YB14Si2Nb4, for Y={0-4at%}. The context of this work is within the ongoing efforts to integrate soft magnetic metal amorphous and nanocomposite materials into electric motor applications by leveraging material properties with motor topology in order to increase the electrical efficiency and decrease the size, the usage of rare-earth permanent magnets, and the power losses of electric motors. A mass balance model derived from consideration of the partitioning of glass forming elements relates local composition to crystal state in these alloys. The ‘polymorphic burst’ onset mechanism and a Time-Temperature- Transformation diagram for secondary crystallization are also presented in relation to the partitioning of glass forming elements. Further, the intrinsic electrical resistivity of the material is related to the formation of virtual bound states due to dilute amounts of the glass forming elements. And lastly, a multiphase resistivity model for the effective composite resistivity that accounts for the amorphous, crystalline, and glass former-rich amorphous regions, each with distinct intrinsic resistivity, is also presented. The presented models are validated experimentally on the Co-containing alloys by Atom Probe Tomography performed through collaboration with Pacific Northwestern National Laboratory.
386

Microprocessor based step motor controller

Magotra, Neeraj January 2011 (has links)
Typescript (Photocopy) / Digitized by Kansas Correctional Industries
387

Testing of the inter-turn insulation of high voltage induction motor coils

Hopkins, Michael John 05 February 2015 (has links)
No description available.
388

The effect of voltage dips on wound rotor induction motors used in slip energy recovery drives – implications for converters

Davies, Simon Quail 31 October 2006 (has links)
Student Number : 0004041J - MSc dissertation - School of Electrical and Information Engineering - Faculty of Engineering / Slip energy recovery (SER) drives are used extensively in industry as they offer cost effective speed control of large wound rotor induction motors. The biggest disadvantage associated with the use of SER drives is the vulnerability of the rotor circuit converters to power system disturbances such as voltage dips. The failure of converters as a result of voltage dips is a problem associated with the use of these particular drives. The aim of this research is to better understand the stresses on rotor circuit converters as a result of voltage dips at the terminals of the motor. The rotor transients developed by a wound rotor induction motor are investigated for a range of three phase and single phase voltage dips. Simulations conducted in the Alternative Transients Program (ATP) supplement measurements conducted on a simplified SER circuit. The results confirm that voltage dips cause significant stresses on the converters in the rotor circuit. Good correlation was obtained between simulated and measured results. This work allows for a better understanding of the response of wound rotor induction motors to voltage dips and identifies the threat that voltage dips impose on the SER rotor circuit converters.
389

Automated intelligent electric engine design (AIEED) application

Minucci, Giuliano Antonio Vincenzo January 2018 (has links)
A research report submitted in fulfilment of the requirements for the degree of Master’s in Engineering to the Faculty of Engineering and the Built Environment, School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, 2018 / The automotive industry is experiencing a major transition with regards to powertrain where the traditional internal combustion engine is being replaced by hybrid or all-electric solutions. As a result of this transition, many powertrain engineering firms, such as Integral Powertrain, are required to adapt or develop tools to improve the quality and time to respond to the rapid increase in new electric motor enquiries. This paper details the development of the foundations of a software tool (AIEED) used to improve the time and quality of response to new motor enquiries. The foundations of the AIEED tool are built into a Microsoft Excel document which contains the necessary logic required to convert customer requirements data into geometrical design data. A series of macros are included in the tool which allow for the automated generation of a first-level computer-aided design (CAD) model of the motor, including the following components; stator, windings, rotor, magnets, housing and cover. The CAD models, which serve to improve the quality of response to new motor enquiries and provide a basis for further detailed development, are generated on the CATIA V5 design platform. In addition, the tool makes use of the CAD model to determine the estimate cost of the unit based on average material costs per unit mass defined in the materials database stored in the tool. It is estimated that the AIEED tool reduces the response time to new motor enquires by 75%. Certain assumptions and limitations have been applied such that the foundations of the tool only include support for the following motor specifications: Surface Permanent Magnet Alternating Current cylindrical radial flux motors (external stator and internal rotor). • The units are designed for 3-phase supply. • The winding configuration is limited to concentrated double layer option. • Parallel tooth, arc-bottom, semi-closed stator slot profiles. • Arc-shaped radially magnetised surface magnet rotor configuration option. A simple data verification filter is applied to minimise the potential for invalid inputs. However, a full validation and verification process is recommended for future work. In addition, it is recommended that the tool be expanded to support additional motor types and specifications as well as package the foundations into a single, easy-to-use utility. / XL2019
390

Modeling of linear induction machines for analysis and control

Unknown Date (has links)
In this thesis, the analysis of the dynamic response of a Linear Induction Motor as an electromechanical system is done, accounting for all the governing equations implied in the process which are used to develop the corresponding simulation models. Once this model is presented, a feedback control system is implemented in order to analyze the controlled response of the motor, considering the applications and conditions analogue to aircraft launcher systems. Also a comparison between the Linear and Rotary induction motors describing the differences, similarities and equivalences will be developed. / by Armando Josâe Sinisterra. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.

Page generated in 0.0524 seconds