• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation of thalamic neurons from mouse embryonic stem cells / マウス胚性幹細胞からの視床神経の分化誘導

Shiraishi, Atsushi 23 January 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20790号 / 医博第4290号 / 新制||医||1025(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 高橋 淳, 教授 井上 治久, 教授 林 康紀 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

Investigation of the Molecular Function of CHD7, the Protein Implicated in CHARGE Syndrome, Using Next-Generation Genomics

Schnetz, Michael Paul January 2010 (has links)
No description available.
3

Characterization of ES Cell-derived Cortical Radial Precursor Differentiation

Norman, Andreea 13 January 2011 (has links)
Murine neural precursor cells have been a well studied model for neural cell fate determination and stem cell function both in vivo and in primary culture. However, factors such as cell number, the presence of multiple cell populations and of niche intrinsic factors made it difficult to dissect the mechanisms regulating cortical development. To overcome this issue, we have developed a culture system where mouse embryonic stem cells (ES) are differentiated to cortical radial precursors through retinoic acid treatment of embryoid bodies. One day after plating in neural differentiation conditions, ~70% of cells in the culture are cortical radial precursors (RPs) as indicated by the definitive cortical marker Emx1, and over 8 days in culture, these RPs differentiate to pyramidal glutamatergic neurons of the cortex mimicking in vivo development. Astrocyte differentiation can be observed later as the culture progresses, which again mimics the typical timed genesis of cells in the cortex. The stem cell properties and cell fate of these RPs can be manipulated with growth factors in culture as they are in vivo. In particular, FGF2 promotes proliferation and survival, while ciliary neurotrophic factor (CNTF) induces precocious astrocyte formation. Thus, our ES-derived cortical RP cultures can serve as an alternate and complementary in vitro model to examine neural precursor biology during early development.
4

Characterization of ES Cell-derived Cortical Radial Precursor Differentiation

Norman, Andreea 13 January 2011 (has links)
Murine neural precursor cells have been a well studied model for neural cell fate determination and stem cell function both in vivo and in primary culture. However, factors such as cell number, the presence of multiple cell populations and of niche intrinsic factors made it difficult to dissect the mechanisms regulating cortical development. To overcome this issue, we have developed a culture system where mouse embryonic stem cells (ES) are differentiated to cortical radial precursors through retinoic acid treatment of embryoid bodies. One day after plating in neural differentiation conditions, ~70% of cells in the culture are cortical radial precursors (RPs) as indicated by the definitive cortical marker Emx1, and over 8 days in culture, these RPs differentiate to pyramidal glutamatergic neurons of the cortex mimicking in vivo development. Astrocyte differentiation can be observed later as the culture progresses, which again mimics the typical timed genesis of cells in the cortex. The stem cell properties and cell fate of these RPs can be manipulated with growth factors in culture as they are in vivo. In particular, FGF2 promotes proliferation and survival, while ciliary neurotrophic factor (CNTF) induces precocious astrocyte formation. Thus, our ES-derived cortical RP cultures can serve as an alternate and complementary in vitro model to examine neural precursor biology during early development.

Page generated in 0.0667 seconds