• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automated Liver Segmentation from MR-Images Using Neural Networks / Automatiserad leversegmentering av MR-bilder med neurala nätverk

Zaman, Shaikh Faisal January 2019 (has links)
Liver segmentation is a cumbersome task when done manually, often consuming quality time of radiologists. Use of automation in such clinical task is fundamental and the subject of most modern research. Various computer aided methods have been incorporated for this task, but it has not given optimal results due to the various challenges faced as low-contrast in the images, abnormalities in the tissues, etc. As of present, there has been significant progress in machine learning and artificial intelligence (AI) in the field of medical image processing. Though challenges exist, like image sensitivity due to different scanners used to acquire images, difference in imaging methods used, just to name a few. The following research embodies a convolutional neural network (CNN) was incorporated for this process, specifically a U-net algorithm. Predicted masks are generated on the corresponding test data and the Dice similarity coefficient (DSC) is used as a statistical validation metric for performance evaluation. Three datasets, from different scanners (two1.5 T scanners and one 3.0 T scanner), have been evaluated. The U-net performs well on the given three different datasets, even though there was limited data for training, reaching upto DSC of 0.93 for one of the datasets.

Page generated in 0.0713 seconds