Spelling suggestions: "subject:"multilayer materials"" "subject:"multiplayer materials""
1 |
Inverse Heat Conduction Approach for Infrared Non-destructive Testing of Single and Multi-layer MaterialsBorazjani, Ehsan 22 June 2012 (has links)
The focus of this thesis is to derive analytical tools for the design of infrared nondestructive tests in single and multi layer material bodies. This requires the predetermination of the parameters of the experiment such that the infrared image has the required resolution for defect detection. Inverse heat conduction in single and multi-layer materials is investigated to determine the required frequency of excitation in order to obtain a desired temperature at the observation point. We use analytical quadrupole representation to derive a polynomial relation to estimate the frequency of the periodic excitation as a function of the temperature amplitude at a given observation point within the body. The formula includes characteristic geometric and material parameters of the system. The polynomial formula can be an e ective design tool for quick frequency predetermination in the design of non-destructive testing experiments with infrared thermography. The convergence and accuracy of the formula is assessed by comparison with the analytical thermal quadrupole solution and experimental results. We also investigate the e ect of the nite length of the material domain in order to establish the range of applicability of a simpli ed formula based on semi-in nite domain assumption. The e ect of nite length is investigated analytically by using (i) Fourier series which accounts for transients and (ii) Time varying solution associated to the steady state solution when a purely periodic excitation is applied. These results are also compared with numerical solution obtained with commercial nite element software ANSYSTM.
|
2 |
Inverse Heat Conduction Approach for Infrared Non-destructive Testing of Single and Multi-layer MaterialsBorazjani, Ehsan 22 June 2012 (has links)
The focus of this thesis is to derive analytical tools for the design of infrared nondestructive tests in single and multi layer material bodies. This requires the predetermination of the parameters of the experiment such that the infrared image has the required resolution for defect detection. Inverse heat conduction in single and multi-layer materials is investigated to determine the required frequency of excitation in order to obtain a desired temperature at the observation point. We use analytical quadrupole representation to derive a polynomial relation to estimate the frequency of the periodic excitation as a function of the temperature amplitude at a given observation point within the body. The formula includes characteristic geometric and material parameters of the system. The polynomial formula can be an e ective design tool for quick frequency predetermination in the design of non-destructive testing experiments with infrared thermography. The convergence and accuracy of the formula is assessed by comparison with the analytical thermal quadrupole solution and experimental results. We also investigate the e ect of the nite length of the material domain in order to establish the range of applicability of a simpli ed formula based on semi-in nite domain assumption. The e ect of nite length is investigated analytically by using (i) Fourier series which accounts for transients and (ii) Time varying solution associated to the steady state solution when a purely periodic excitation is applied. These results are also compared with numerical solution obtained with commercial nite element software ANSYSTM.
|
3 |
Inverse Heat Conduction Approach for Infrared Non-destructive Testing of Single and Multi-layer MaterialsBorazjani, Ehsan January 2012 (has links)
The focus of this thesis is to derive analytical tools for the design of infrared nondestructive tests in single and multi layer material bodies. This requires the predetermination of the parameters of the experiment such that the infrared image has the required resolution for defect detection. Inverse heat conduction in single and multi-layer materials is investigated to determine the required frequency of excitation in order to obtain a desired temperature at the observation point. We use analytical quadrupole representation to derive a polynomial relation to estimate the frequency of the periodic excitation as a function of the temperature amplitude at a given observation point within the body. The formula includes characteristic geometric and material parameters of the system. The polynomial formula can be an e ective design tool for quick frequency predetermination in the design of non-destructive testing experiments with infrared thermography. The convergence and accuracy of the formula is assessed by comparison with the analytical thermal quadrupole solution and experimental results. We also investigate the e ect of the nite length of the material domain in order to establish the range of applicability of a simpli ed formula based on semi-in nite domain assumption. The e ect of nite length is investigated analytically by using (i) Fourier series which accounts for transients and (ii) Time varying solution associated to the steady state solution when a purely periodic excitation is applied. These results are also compared with numerical solution obtained with commercial nite element software ANSYSTM.
|
4 |
Modélisation de la durée de vie des barrières thermiques, par le développement et l'exploitation d'essais d'adhérence / Lifetime prediction of thermal barrier coatings by an energetic approachVaunois, Jean-Roch 20 June 2013 (has links)
Cette étude porte sur la construction d’un modèle de prévision de la durée de vie à écaillage des barrièresthermiques protégeant les aubes de turbines aéronautiques, par le développement et l’exploitation d’essaisd’adhérence. La chaîne de modélisation de la durée de vie proposée comporte trois étapes. Tout d’abord, leschamps mécaniques dans les différentes couches du système sont évalués par un modèle semi-analytique decomportement de la structure multicouche, qui a été modifié pour favoriser son adaptabilité industrielle. Àpartir de l’histoire thermo-mécanique du substrat comme donnée d’entrée, qui peut être extraite d’un calculd’aube par EF, ce modèle prévoit la déformation de l’interface entre la pièce métallique et sa protectioncéramique lorsqu’un champ de contraintes lié à l’oxydation du métal lui est appliqué. Des mesures de rumpling,provoqué par le vieillissement du système à différentes températures, ont permis d’identifier et de valider lemodèle.Dans un deuxième temps, l’énergie d’adhérence est estimée au travers d’un modèle d’endommagements’appuyant sur la réponse mécanique du modèle de comportement précédent. L’endommagement, écrit àl’échelle de l’interface et découplé du comportement mécanique, a été identifié sur l’énergie d’adhérencequantifiée expérimentalement. Afin de caractériser au mieux l’énergie d’adhérence de la barrière thermiquesur son substrat, plusieurs essais ont été mis en oeuvre, permettant de solliciter l’interface dans une largegamme de mixité modale. Pour ce faire, des essais spécifiques ont été développés pour se rapprocher d’unepropagation de la fissure interfaciale en mode de cisaillement. Finalement, un critère énergétique permet dedéterminer la durée de vie du système, par comparaison de l’énergie d’adhérence et de l’énergie disponibledans le système pour la propagation d’une fissure interfaciale. Cette chaîne de prévision de la durée de vie estapplicable en post-traitement d’un calcul d’aube. Il a été montré que les tendances expérimentales sontcorrectement reproduites par la chaîne de durée de vie mise en place. / The aim of this study is to build a lifetime assessment model for thermal barrier coatings protecting aircraftturbine blades, by setting up and using adhesion tests. The model involves three steps: first, the mechanicalfields inside the layers are computed by a semi-analytical model of the multi-layered system behaviour, whichwas improved to fit the industrial demands. Given the thermo-mechanical history of the substrate (which canbe derived from FE computations), the model computes the interface strains between the metallic substrateand the ceramic protection under a stress field induced by oxidation. The model has been identified andvalidated with respect to rumpling measurements for different ageing temperatures of the system.During a second step, the interface toughness is estimated through a damage model depending on themechanical response of the multi-layered system. The damage parameters have been identified on toughnessmeasurements, and are not coupled to the multi-layer behaviour. In order to characterize the TBC toughness,several shear mode interface crack propagation tests have been developed and carried out.Finally, an energetic approach allows computing the system lifetime by comparing the decreasing interfacetoughness to the elastic stored energy. This lifetime assessment model can be applied as a post-processing of afinite element computation on a turbine blade and it has been shown that the experimental trends areconsistent with the lifetime given by the model.
|
Page generated in 0.0936 seconds