• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Fast MLP-based Learning Method and its Application to Mine Countermeasure Missions

Shao, Hang 16 November 2012 (has links)
In this research, a novel machine learning method is designed and applied to Mine Countermeasure Missions. Similarly to some kernel methods, the proposed approach seeks to compute a linear model from another higher dimensional feature space. However, no kernel is used and the feature mapping is explicit. Computation can be done directly in the accessible feature space. In the proposed approach, the feature projection is implemented by constructing a large hidden layer, which differs from traditional belief that Multi-Layer Perceptron is usually funnel-shaped and the hidden layer is used as feature extractor. The proposed approach is a general method that can be applied to various problems. It is able to improve the performance of the neural network based methods and the learning speed of support vector machine. The classification speed of the proposed approach is also faster than that of kernel machines on the mine countermeasure mission task.
2

A Fast MLP-based Learning Method and its Application to Mine Countermeasure Missions

Shao, Hang 16 November 2012 (has links)
In this research, a novel machine learning method is designed and applied to Mine Countermeasure Missions. Similarly to some kernel methods, the proposed approach seeks to compute a linear model from another higher dimensional feature space. However, no kernel is used and the feature mapping is explicit. Computation can be done directly in the accessible feature space. In the proposed approach, the feature projection is implemented by constructing a large hidden layer, which differs from traditional belief that Multi-Layer Perceptron is usually funnel-shaped and the hidden layer is used as feature extractor. The proposed approach is a general method that can be applied to various problems. It is able to improve the performance of the neural network based methods and the learning speed of support vector machine. The classification speed of the proposed approach is also faster than that of kernel machines on the mine countermeasure mission task.
3

A Fast MLP-based Learning Method and its Application to Mine Countermeasure Missions

Shao, Hang January 2012 (has links)
In this research, a novel machine learning method is designed and applied to Mine Countermeasure Missions. Similarly to some kernel methods, the proposed approach seeks to compute a linear model from another higher dimensional feature space. However, no kernel is used and the feature mapping is explicit. Computation can be done directly in the accessible feature space. In the proposed approach, the feature projection is implemented by constructing a large hidden layer, which differs from traditional belief that Multi-Layer Perceptron is usually funnel-shaped and the hidden layer is used as feature extractor. The proposed approach is a general method that can be applied to various problems. It is able to improve the performance of the neural network based methods and the learning speed of support vector machine. The classification speed of the proposed approach is also faster than that of kernel machines on the mine countermeasure mission task.
4

Calibration of Two Dimensional Saccadic Electro-Oculograms Using Artificial Neural Networks

Coughlin, Michael J., n/a January 2003 (has links)
The electro-oculogram (EOG) is the most widely used technique for recording eye movements in clinical settings. It is inexpensive, practical, and non-invasive. Use of EOG is usually restricted to horizontal recordings as vertical EOG contains eyelid artefact (Oster & Stern, 1980) and blinks. The ability to analyse two dimensional (2D) eye movements may provide additional diagnostic information on pathologies, and further insights into the nature of brain functioning. Simultaneous recording of both horizontal and vertical EOG also introduces other difficulties into calibration of the eye movements, such as different gains in the two signals, and misalignment of electrodes producing crosstalk. These transformations of the signals create problems in relating the two dimensional EOG to actual rotations of the eyes. The application of an artificial neural network (ANN) that could map 2D recordings into 2D eye positions would overcome this problem and improve the utility of EOG. To determine whether ANNs are capable of correctly calibrating the saccadic eye movement data from 2D EOG (i.e. performing the necessary inverse transformation), the ANNs were first tested on data generated from mathematical models of saccadic eye movements. Multi-layer perceptrons (MLPs) with non-linear activation functions and trained with back propagation proved to be capable of calibrating simulated EOG data to a mean accuracy of 0.33° of visual angle (SE = 0.01). Linear perceptrons (LPs) were only nearly half as accurate. For five subjects performing a saccadic eye movement task in the upper right quadrant of the visual field, the mean accuracy provided by the MLPs was 1.07° of visual angle (SE = 0.01) for EOG data, and 0.95° of visual angle (SE = 0.03) for infrared limbus reflection (IRIS®) data. MLPs enabled calibration of 2D saccadic EOG to an accuracy not significantly different to that obtained with the infrared limbus tracking data.

Page generated in 0.0669 seconds