• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of Sputtering Technology on Preparing Nano-sized Composite Photocatalyst TiO2/ITO for Acetone Decomposition

Guo, Bo-cheng 18 August 2010 (has links)
This study applied sputtering technology to prepare composite film photocatalyst TiO2/ITO for investigating the decomposition efficiency of acetone using composite TiO2/ITO made by single- and multi-layer processes. The influences of operating parameters, including sputtering operating parameters and photocatalytic operating parameters, on the decomposition efficiency of acetone were further investigated. Operating parameters investigated for the sputtering process included oxygen to argon ratio (O2/Ar), temperature, substrate, sputtering dutation, and sputtering layers, while operating parameters investigated for the photocatalytic decomposition of acetone included light wavelength, H2O concentration, O2 concentration, initial acetone concentration, and the type of photocatalysts. In the experiments, acetone was degraded by the composite film photocatalyst TiO2/ITO in a self-designed batch photocatalytic reactor. Operating parameters included light wavelength (350~400 nm, 435~500 nm, 506~600 nm), the type of photocatalysts (single-layer film photocatalyst TiO2/ITO with the thickness of 355.3, 396.6, 437.5, 487.5, and 637.5 nm; double- and triple-layer TiO2/ITO), H2O concentration (0, 50, 100, 200, and 300 ppm). The incident light with different wavelength irradiated with three 15-W lamps of near UV light or LED lamps of blue and green lights placed on the top of the photocatalytic reactor. Acetone was injected into the reactor by using a gasket syringe and vaporized for further photocatalytic degradation on the film photocatalyst TiO2/ITO placed at the bottom of the reactor. Air samples were taken to analyze acetone concentration with a GC/FID. The composite film photocatalyst TiO2/ITO was mainly composed of anatase with a few rutile. The thicknesses of the single- and IV double-layer film photocatalyst with the thickness of 473.5 nm and 506.0 nm, respectively. Experimental results indicated that the highest decomposition efficiency of acetone was obtained by using TiO2/ITO, followed by TiO2/ground glass and TiO2/glass. The highest decomposition efficiency of acetone was observed by using TiO2/ITO at 50¢XC, 20% O2, and 100 ppm H2O. In the kinetic model, the acetone decomposition of single-layer TiO2/ITO was zero-order reaction. The acetone decomposition of double-layer TiO2/ITO in high initial acetone concentration was zero-order reaction, while that in low initial acetone concentration was first-order reaction. Thus, the decomposition of acetone exerted by TiO2 film photocatalyst can be enhanced efficiently by ITO. Under the incidence of blue light, the reaction rate of acetone decomposition were 2.353¡Ñ10-5 and 3.478¡Ñ10-5 £gmole/cm2-s for using single- and double-layer TiO2/ITO, respectively. Finally, a bimolecular Langmuir-Hinshelwood (L-H) kinetic model was applied to simulate the influences of initial acetone concentration, temperature, and relative humidity on the promotion and inhibition for the photocatalytic degradation of acetone. This study revealed that the L-H kinetic model could successfully simulate the photocatalytic reaction rate of acetone.

Page generated in 0.117 seconds