• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-resolution indexing method for time series

Ma, Mei January 2010 (has links)
Time series datasets are useful in a wide range of diverse real world applications. Retrieving or querying from a collection of time series is a fundamental task, with a key example being the similarity query. A similarity query returns all time series from the collection that are similar to a given reference time series. This type of query is particularly useful in prediction and forecasting applications. / A key challenge for similarity queries is efficiency and for large datasets, it is important to develop efficient indexing techniques. Existing approaches in this area are mainly based on the Generic Multimedia Indexing Method (GEMINI), which is a framework that uses spatial indexes such as the R-tree to index reduced time series. For processing a similarity query, the index is first used to prune candidate time series using a lower bounding distance. Then, all remaining time series are compared using the original similarity measure, to derive the query result. Performance within this framework depends on the tightness of the lower bounding distance with respect to the similarity measure. Indeed much work has been focused on representation and dimensionality reduction, in order to provide a tighter lower bounding distance. / Existing work, however, has not used employed dimensionality reduction in a flexible way, requiring all time series to be reduced to have the same dimension. In contrast, in this thesis, we investigate the possibility of allowing a variable dimension reduction. To this end, we develop a new and more flexible tree based indexing structure called the Multi-Resolution Index (MR-Index), which allows dimensionality to vary across different levels of the tree. We provide efficient algorithms for querying, building and maintaining this structure. Through an experimental analysis, we show that the MR-Index can deliver improved query efficiency compared to the traditional R-tree index, using both the Euclidean and dynamic time warping similarity measures.
2

Multi-resolution indexing method for time series

Ma, Mei January 2010 (has links)
Time series datasets are useful in a wide range of diverse real world applications. Retrieving or querying from a collection of time series is a fundamental task, with a key example being the similarity query. A similarity query returns all time series from the collection that are similar to a given reference time series. This type of query is particularly useful in prediction and forecasting applications. / A key challenge for similarity queries is efficiency and for large datasets, it is important to develop efficient indexing techniques. Existing approaches in this area are mainly based on the Generic Multimedia Indexing Method (GEMINI), which is a framework that uses spatial indexes such as the R-tree to index reduced time series. For processing a similarity query, the index is first used to prune candidate time series using a lower bounding distance. Then, all remaining time series are compared using the original similarity measure, to derive the query result. Performance within this framework depends on the tightness of the lower bounding distance with respect to the similarity measure. Indeed much work has been focused on representation and dimensionality reduction, in order to provide a tighter lower bounding distance. / Existing work, however, has not used employed dimensionality reduction in a flexible way, requiring all time series to be reduced to have the same dimension. In contrast, in this thesis, we investigate the possibility of allowing a variable dimension reduction. To this end, we develop a new and more flexible tree based indexing structure called the Multi-Resolution Index (MR-Index), which allows dimensionality to vary across different levels of the tree. We provide efficient algorithms for querying, building and maintaining this structure. Through an experimental analysis, we show that the MR-Index can deliver improved query efficiency compared to the traditional R-tree index, using both the Euclidean and dynamic time warping similarity measures.

Page generated in 0.1548 seconds