1 |
Linear Prediction Approach for Blind Multiuser Detection in Multicarrier CDMA SystemsQin, Qin 15 October 2002 (has links)
No description available.
|
2 |
Multirate MC-CDMA:performance analysis in stochastically modeled correlated fading channels, with an application to OFDM-UWBKunnari, E. (Esa) 20 May 2008 (has links)
Abstract
Multicarrier and multiple input–multiple output (MIMO) techniques have become popular in wireless communications over multipath fading channels in recent years. This thesis firstly considers the characterization and simulation of fading mobile radio channels for MIMO multicarrier systems. Secondly, the performance of spread-spectrum multicarrier (MC) code-division multiple-access (CDMA) with multirate transmission is analyzed. Thirdly, the analysis is applied to ultra-wideband (UWB) orthogonal frequency-division multiplexing (OFDM) systems enhanced with frequency-domain code-division multiplexing (CDM).
The response of a small-scale fading channel is derived as a function of time, transmit and receive antenna positions, and subcarrier frequency, which leads to a tapped delay-line model with time-, space-, and frequency-selective taps. The taps are modeled as a sum of a deterministic line-of-sight or dominant scattered path and a zero-mean Gaussian part composed of a number of unresolvable scattered paths and, therefore, are Rice fading. The Gaussian parts have the desired temporal and spatiospectral correlations generated by time-correlation shaping filtering and a space-frequency correlation transformation, respectively. The simulator achieves a good accuracy while retaining a reasonable computational complexity.
The generic performance analysis of MC-CDMA includes both the multicode and variable spreading factor (VSF) multirate schemes that are inherent for CDMA and capable of providing efficient support for services of different required data rates. The analysis also takes into account the intersymbol interference caused by the multipath delay components exceeding a guard interval, which is commonly omitted in the literature by assuming the guard interval to be longer than the maximum delay spread. Results comparing and pointing out notable differences in the error rate performance of the two multirate schemes in conjunction with six different combining techniques are presented for a synchronous downlink and both a synchronous and asynchronous uplink.
The analysis of CDM-enhanced OFDM-UWB involves first a single piconet with different combinations of the VSF and multicode schemes. Frequency-domain spreading is found to improve the performance remarkably when a sufficient spreading factor and a suitable subcarrier combining method are used. Subsequently, CDMA of simultaneously operating piconets (SOPs) with either the VSF or multicode scheme is considered. While both multirate schemes result in a similar performance when the number of SOPs is large, notable differences arise when there are only a few SOPs.
|
3 |
Spectral efficiency of CDMA based ad-hoc networksAhmed, Junaid January 2011 (has links)
Spectrum efficiency and energy efficiency are two important attributes driving innovation in wireless communication. Efficient spectrum utilization and sharing with multiple access techniques and using under-utilized spectra by cognitive radios is the current focus due to the scarcity and cost of the available radio spectrum. Energy efficiency to increase operating time of portable handheld devices like smartphones that handle simultaneous voice/video streaming and web browsing and battery powered nodes in a sensor network where battery capacity determines the lifetime of the network is another area attracting researchers. The focus of this thesis is the spectral efficiency of multicarrier code division multiple access (CDMA) in wireless ad-hoc networks. Furthermore, energy efficiency to maximize lifetime of a network are also studied.In a multicarrier CDMA system inter-carrier interference (ICI) due to carrier frequency offset and multiple access interference (MAI) are two major factors that deteriorate the performance. Previous work in this area has been mostly focused on simulation results due to the complexity of the analysis due to the large number of random variables involved. Taking into account accurate statistical models for ICI and MAI that account for the correlation between adjacent subcarriers, this thesis presents new mathematical analysis for the spectral efficiency of multicarrier CDMA communication systems over a frequency selective Rayleigh fading environment. We analyze and compare three multicarrier CDMA schemes which are multicarrier CDMA, multicarrier direct-sequence CDMA and multitone CDMA. We also present simulation results to confirm the validity of our analysis. We also analyze the performance of three simple multiple access techniques or coexistence etiquettes in detail, which are simple to implement and do not require any central control. Accurate interference models are developed and are used to derive accurate expressions for packet error rates in the case of direct sequence CDMA and slotted packet transmission schemes. These results are then used to study the performance of the coexistence etiquettes and compare them with each other. Finally we present a new joint node selection and power allocation strategy that increases lifetime of an ad-hoc network where nodes cooperate to enable diversity in transmission.
|
Page generated in 0.0598 seconds