• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Filtered Multitone (FMT) Implementation with Custom Instructions on an Altera FPGA

Xin, Xin 10 June 2013 (has links)
There is a belief that radio frequencies  are running out. However, according to a report from the Federal Communications Commission (FCC) in 2002, a different story was told : At any given time and location, much of the prized spectrum lies idle. At the same time, FCC revealed the fact that, in many bands, spectrum access is a more significant problem than physical scarcity of spectrum, in large part due to legacy command-and-control regulation that limits the ability of potential spectrum users to obtain such access. Hence, as opposed to static spectrum access, dynamic spectrum access (DSA) was proposed to solve the predicament. One such DSA model propose the existence of Primary users (licensed users and Secondary users (unlicensed users). Multicarrier communication technology is adopted to enable the coexistence of PU and SU. Orthogonal Frequency Division Multiplexing (OFDM) technology has been popular for multicarrier communications. A disadvantage for OFDM in the Cognitive Radio environment is its large side lobes in the frequency domain, which is a result of single-symbol pulse duration. Filter Bank Multicarrier (FBMC) uses filters that have small side lobes to synthesize/analyze the sub-carriers so as to greatly alleviate the previous mentioned disadvantage. FMT is one FBMC technique.  Although many hardware implementations have been explored during last few decades on OFDM, few FMT hardware implementation results, especially Hardware/Software Co-design, have been presented. This paper presents a HW/SW Co-design implementation result of FMT transceiver on the Altera DE4 board. / Master of Science
2

On the Improvement of the Achievable bit rate in Multicarrier Communication Systems Using Signal Processing Techniques

Borna, Bahram 11 1900 (has links)
<p>With the growing demand for high data rate communication services, multi-carrier communication schemes have started to become the method of choice in many applications. In this thesis, multi-carrier communication systems are studied and various methods for improving their achievable bit rate arc proposed.</p> <p>Filtered multitone (FMT) is a multi-carrier communication scheme which is implemented using a modulated filter bank structure. In this thesis, an efficient design method for the prototype filter of the FMT system is proposed. This design method allows improvement of the achievable hit rate by efficient evaluation of the inherent trade-off between the sub channel spectral containment provided by the prototype filter and the intersymbol interference (lSI) that the filter generates. Numerical results further demonstrat.e the effectiveness of the proposed design method. The insight gained from this design is also used to determine the optimal number of subchannels in FMT systems. Moreover, since the presence of lSI in FMT subchannels outputs renders the conventional water-filling power loading algorithm suboptimal, we propose an efficient power loading algorithm for Fl\IT that enables higher achievable bit rates.</p> <p>Discrete multitone (DMT) is a popular multi-carrier communication scheme, mainly due to its rather low complexity. However. DMT suffers from poor subchannel spectral characteristics. In this thesis, a family of bi-windowed DMT transceivers is proposed that provide both improved sub channel 8pectral containment at the transmitter and improved spectral selectivity at the receiver, without requiring the cyclic prefix to be longer than the order of the channel impulse respon8e. The window8 arc designed in a channel independent manner and are con8trained to produce sub channel outputs that arc free from lSI. Furthermore, the design allows the interisubchannel interference (leI) to be controlled in such a way that it can be mitigated using a relatively simple minimum mean square error (MMSE) successive interference cancellation scheme. Numerical results demonstrate the significant gain in the achievable bit rate obtained Ly the proposed scheme.</p> / Doctor of Philosophy (PhD)
3

Index Modulation Techniques for Energy-efficient Transmission in Large-scale MIMO Systems

Sefunc, Merve 16 March 2020 (has links)
This thesis exploits index modulation techniques to design energy- and spectrum-efficient system models to operate in future wireless networks. In this respect, index modulation techniques are studied considering two different media: mapping the information onto the frequency indices of multicarrier systems, and onto the antenna array indices of a platform that comprises multiple antennas. The index modulation techniques in wideband communication scenarios considering orthogonal and generalized frequency division multiplexing systems are studied first. Single cell multiuser networks are considered while developing the system models that exploit the index modulation on the subcarriers of the multicarrier systems. Instead of actively modulating all the subcarriers, a subset is selected according to the index modulation bits. As a result, there are subcarriers that remain idle during the data transmission phase and the activation pattern of the subcarriers convey additional information. The transceivers for the orthogonal and generalized frequency division multiplexing systems with index modulation are both designed considering the uplink and downlink transmission phases with a linear combiner and precoder in order to reduce the system complexity. In the developed system models, channel state information is required only at the base station. The linear combiner is designed adopting minimum mean square error method to mitigate the inter-user-interference. The proposed system models offer a flexible design as the parameters are independent of each other. The parameters can be adjusted to design the system in favor of the energy efficiency, spectrum efficiency, peak-to-average power ratio, or error performance. Then, the index modulation techniques are studied for large-scale multiple-input multiple-output systems that operate in millimeter wave bands. In order to overcome the drawbacks of transmission in millimeter wave frequencies, channel properties should be taken in to account while envisaging the wireless communication network. The large-scale multiple-input multiple-output systems increase the degrees of freedom in the spatial domain. This feature can be exploited to focus the transmit power directly onto the intended receiver terminal to cope with the severe path-loss. However, scaling up the number of hardware elements results in excessive power consumption. Hybrid architectures provide a remedy by shifting a part of the signal processing to the analog domain. In this way, the number of bulky and high power consuming hardware elements can be reduced. However, there will be a performance degradation as a consequence of renouncing the fully digital signal processing. Index modulation techniques can be combined with the hybrid system architecture to compensate the loss in spectrum efficiency to further increase the data rates. A user terminal architecture is designed that employs analog beamforming together with spatial modulation where a part of the information bits is mapped onto the indices of the antenna arrays. The system is comprised a switching stage that allocates the user terminal antennas on the phase shifter groups to minimize the spatial correlation, and a phase shifting stage that maximizes the beamforming gain to combat the path-loss. A computationally efficient optimization algorithm is developed to configure the system. The flexibility of the architecture enables optimization of the hybrid transceiver at any signal-to-noise ratio values. A base station is designed in which hybrid beamforming together with spatial modulation is employed. The analog beamformer is designed to point the transmit beam only in the direction of the intended user terminal to mitigate leakage of the transmit power to other directions. The analog beamformer to transmit the signal is chosen based on the spatial modulation bits. The digital precoder is designed to eliminate the inter-user-interference by exploiting the zero-forcing method. The base station computes the hybrid beamformers and the digital combiners, and only feeds back the digital combiners of each antenna array-user pair to the related user terminals. Thus, a low complexity user architecture is sufficient to achieve a higher performance. The developed optimization framework for the energy efficiency jointly optimizes the number of served users and the total transmit power by utilizing the derived upper bound of the achievable rate. The proposed transceiver architectures provide a more energy-efficient system model compared to the hybrid systems in which the spatial modulation technique is not exploited. This thesis develops low-complexity system models that operate in narrowband and wideband channel environments to meet the energy and spectrum efficiency demands of future wireless networks. It is corroborated in the thesis that adopting index modulation techniques both in the systems improves the system performance in various aspects.:1 Introduction 1 1.1 Motivation 1 1.2 Overview and Contribution 2 1.3 Outline 9 2 Preliminaries and Fundamentals 13 2.1 Multicarrier Systems 13 2.2 Large-scale Multiple Input Multiple Output Systems 17 2.3 Index Modulation Techniques 19 2.4 Single Cell Multiuser Networks 22 3 Multicarrier Systems with Index Modulation 27 3.1 Orthogonal Frequency Division Multiplexing 28 3.2 Generalized Frequency Division Multiplexing 40 3.3 Summary 52 4 Hybrid Beamforming with Spatial Modulation 55 4.1 Uplink Transmission 56 4.2 Downlink Transmission 74 4.3 Summary 106 5 Conclusion and Outlook 109 5.1 Conclusion 109 5.2 Outlook 111 A Quantization Error Derivations 113 B On the Achievable Rate of Gaussian Mixtures 115 B.1 The Conditional Density Function 115 B.2 Tight Bounds on the Differential Entropy 116 B.3 A Bound on the Achievable Rate 118 C Multiuser MIMO Downlink without Spatial Modulation 121 Bibliography
4

Sledování spektra a optimalizace systémů s více nosnými pro kognitivní rádio / Spectrum sensing and multicarrier systems optimization for cognitive radio

Povalač, Karel January 2012 (has links)
The doctoral thesis deals with spectrum sensing and subsequent use of the frequency spectrum by multicarrier communication system, which parameters are set on the basis of the optimization technique. Adaptation settings can be made with respect to several requirements as well as state and occupancy of individual communication channels. The system, which is characterized above is often referred as cognitive radio. Equipments operating on cognitive radio principles will be widely used in the near future, because of frequency spectrum limitation. One of the main contributions of the work is the novel usage of the Kolmogorov – Smirnov statistical test as an alternative detection of primary user signal presence. The new fitness function for Particle Swarm Optimization (PSO) has been introduced and the Error Vector Magnitude (EVM) parameter has been used in the adaptive greedy algorithm and PSO optimization. The dissertation thesis also incorporates information about the reliability of the frequency spectrum sensing in the modified greedy algorithm. The proposed methods are verified by the simulations and the frequency domain energy detection is implemented on the development board with FPGA.

Page generated in 0.1557 seconds