1 |
Explicit Multidimensional Solitary WavesKing, Gregory B. (Gregory Blaine) 08 1900 (has links)
In this paper we construct explicit examples of solutions to certain nonlinear wave equations. These semilinear equations are the simplest equations known to possess localized solitary waves in more that one spatial dimension. We construct explicit localized standing wave solutions, which generate multidimensional localized traveling solitary waves under the action of velocity boosts. We study the case of two spatial dimensions and a piecewise-linear nonlinearity. We obtain a large subset of the infinite family of standing waves, and we exhibit several interesting features of the family. Our solutions include solitary waves that carry nonzero angular momenta in their rest frames. The spatial profiles of these solutions also furnish examples of symmetry breaking for nonlinear elliptic equations.
|
Page generated in 0.1252 seconds