• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 67
  • 26
  • 12
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 373
  • 235
  • 122
  • 82
  • 70
  • 59
  • 39
  • 38
  • 32
  • 32
  • 30
  • 26
  • 23
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Abolishing multidrug resistance in cultured lung cancer cells with RNA interference

Prajapati, Kamal 24 July 2010 (has links)
The gene, cox-1, is over-expressed in cultured GLC4 small cell lung cancer cells concurrent with the development of multi-drug resistance (MDR) as a result of the use of the chemotherapeutic agent used to combat the cancer, doxorubicin. Prevention of MDR has been a tremendous challenge in cancer research and this research is concerned with abolishment of MDR as a cancer survival strategy. RNA-mediated interference technology (RNAi) was employed using siRNA to decrease cox-1 expression and temporarily restore the susceptibility of the cells to doxorubicin. GLC4 cells are of three types: S (sensitive cells never exposed to doxorubicin); ADR (MDR cells cultured in doxorubicin), and; REV (revertant cells previously cultured in presence of doxorubicin but no longer). REV and ADR cells were transfected with cox-1 siRNA. After 24 h, 1x106cells were used for RNA isolation and 1 μg of RNA was used for RT-PCR to assess down-regulation of cox-1 RNA. RT-PCR results indicated that cox-1 RNA was down-regulated to basal levels seen before exposure to doxorubicin. Ct values for GLC4/ADR and cox-1 down-regulated GLC4/ADR cells were 23 and 34, respectively. The result indicated abundant levels and moderate levels of cox-1 mRNA in the ADR cells and the transfected ADR cells respectively. The relative expression level of cox-1 mRNA was 33% higher in the non-transfected GLCR/ADR cells as compared to the transfected GLCR/ADR cells as shown by the curve. Two hundred thousand cells were used for hemacytometer cell counts in the presence of trypan blue to assess cell viability. cox-1 down-regulation in ADR cells resulted in a significantly higher percentage of non-viable cells (25.4%) as compared to its non-transfected control (20.5%) using a Student’s t-test (*P <0.05). Similarly, fluorescence microscopy confirmed that apoptosis was significantly increased in the ADR cells treated with doxorubicin and cox-1 siRNA simultaneously (69.4%) as compared to its non-transfected control (56.7%) (*= P <0.01). A Western blot analysis performed by Fernando Cuadrado indicated that siRNA transfection decreased the expression of COX-1 by 66% in GLC4/ ADR cells as compared to the non-transfected control using densitometry. However, no conclusive results were obtained using flow cytometry as the flow cytometer was incapable of analyzing the mixed cell population (adherent and suspension) which is a characteristic of this cell line, GLC4. Thus, we have clearly demonstrated that MDR cancer cells can be altered temporarily to become susceptible to doxorubicin, a potentially important finding for the treatment of cancer patients. / Department of Biology
162

The Regulation of Multidrug Resistance Phosphoglycoprotein (MDR1/P-gp) and Breast Cancer Resistance Protein (BCRP) in the Human Placenta

Rainey, Jenna 04 May 2011 (has links)
Multidrug resistance phosphoglycoprotein (MDR1/P-gp) and breast cancer resistance protein (BCRP) were first isolated in chemoresistant cancer cells and have since been found in a variety of normal tissue, including the placenta. The potential function of MDR1/P-gp and BCRP in the human placenta is to protect the fetus from maternally circulating endogenous steroids and hormones, therapeutic drugs and toxins. The objective of this study was to examine the role of maternal steroids in the regulation of MDR1/P-gp and BCRP in the human placenta. Trophoblast cells were isolated from term placenta tissues and immunohistochemistry, western blot analysis and transport studies were used to determine the effect of maternal steroids on MDR1/P-gp and BCRP regulation. Maternal steroids, present at high concentrations in maternal serum, did not have an effect on BCRP in human syncytiotrophoblast. Estrogen and progesterone did not alter MDR1/P-gp levels in human syncytiotrophoblast, but cortisol significantly decreased MDR1/P-gp levels.
163

A Novel Lipid-based Nanotechnology Platform For Biomedical Imaging And Breast Cancer Chemotherapy

Shuhendler, Adam Jason 15 August 2013 (has links)
A novel, lipid-based platform nanotechnology has been designed to overcome limitations of in vivo fluorescent imaging, multidrug resistance (MDR) phenotypes hindering breast cancer chemotherapy, and shortcomings of magnetic resonance imaging (MRI) thermometry. Using this platform, three nanoparticle systems have been developed: QD-SLN (quantum dot-loaded solid lipid nanoparticles), DMsPLN (doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles), and HLN (hydrogel-lipid hybrid nanoparticles). Stealth, near-infrared emitting QD-SLN were developed for deep tissue fluorescence imaging, which were capable of extending the depth of penetration beyond 2 cm, with near complete probe clearance and good tolerability in vivo. The QD-SLN was used to evaluate the biodistribution of non-targeted SLN and actively targeted RGD-conjugated SLN. Non-targeted SLN accumulated in breast tumors and evaded liver uptake. The RGD-SLN showed prolonged retention in breast tumor neovasculature at the cost of lesser tumor accumulation due to enhanced liver uptake. With this information, a long circulating, non-targeted DMsPLN with a synergistic cancer chemotherapeutic combination of doxorubicin and mitomycin C was formulated to overcome MDR, enhancing breast cancer chemotherapy. Extensive tumor cell uptake and perinuclear trafficking of DMsPLN overcame the MDR phenotype of breast tumor cells in vitro. The DMsPLN provided the most efficacious chemotherapy reported in literature against aggressive mouse mammary tumors in vivo with significant reduction in whole animal and cardiotoxicity as compared to clinically applied liposomal doxorubicin. In establishing our tumor models, the impact of Matrigel™ on the tumor microenvironment was investigated, demonstrating altered tumor vascular and lymphatic anatomy and physiology, and significantly impacting nanomedicines assessment in mouse models of cancer. In all in vivo studies, tumors were established without use of Matrigel™. To guide thermotherapy of solid tumors, a novel HLN was formulated for use in MRI thermometry, presenting the first contrast agent capable of indicating a tunable, absolute two-point temperature window. In using specific limitations of therapeutic and imaging modalities to inform rational nanoparticle design, this lipid-based platform nanotechnology has extended the application of fluorescence imaging in vivo, enhanced the utility of nanoparticulate chemotherapeutics against breast cancer independent of MDR status, and provided novel functionality for MRI thermometry.
164

A Novel Lipid-based Nanotechnology Platform For Biomedical Imaging And Breast Cancer Chemotherapy

Shuhendler, Adam Jason 15 August 2013 (has links)
A novel, lipid-based platform nanotechnology has been designed to overcome limitations of in vivo fluorescent imaging, multidrug resistance (MDR) phenotypes hindering breast cancer chemotherapy, and shortcomings of magnetic resonance imaging (MRI) thermometry. Using this platform, three nanoparticle systems have been developed: QD-SLN (quantum dot-loaded solid lipid nanoparticles), DMsPLN (doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles), and HLN (hydrogel-lipid hybrid nanoparticles). Stealth, near-infrared emitting QD-SLN were developed for deep tissue fluorescence imaging, which were capable of extending the depth of penetration beyond 2 cm, with near complete probe clearance and good tolerability in vivo. The QD-SLN was used to evaluate the biodistribution of non-targeted SLN and actively targeted RGD-conjugated SLN. Non-targeted SLN accumulated in breast tumors and evaded liver uptake. The RGD-SLN showed prolonged retention in breast tumor neovasculature at the cost of lesser tumor accumulation due to enhanced liver uptake. With this information, a long circulating, non-targeted DMsPLN with a synergistic cancer chemotherapeutic combination of doxorubicin and mitomycin C was formulated to overcome MDR, enhancing breast cancer chemotherapy. Extensive tumor cell uptake and perinuclear trafficking of DMsPLN overcame the MDR phenotype of breast tumor cells in vitro. The DMsPLN provided the most efficacious chemotherapy reported in literature against aggressive mouse mammary tumors in vivo with significant reduction in whole animal and cardiotoxicity as compared to clinically applied liposomal doxorubicin. In establishing our tumor models, the impact of Matrigel™ on the tumor microenvironment was investigated, demonstrating altered tumor vascular and lymphatic anatomy and physiology, and significantly impacting nanomedicines assessment in mouse models of cancer. In all in vivo studies, tumors were established without use of Matrigel™. To guide thermotherapy of solid tumors, a novel HLN was formulated for use in MRI thermometry, presenting the first contrast agent capable of indicating a tunable, absolute two-point temperature window. In using specific limitations of therapeutic and imaging modalities to inform rational nanoparticle design, this lipid-based platform nanotechnology has extended the application of fluorescence imaging in vivo, enhanced the utility of nanoparticulate chemotherapeutics against breast cancer independent of MDR status, and provided novel functionality for MRI thermometry.
165

Multidrug Resistance In Locally Advanced Breast Cancer

Atalay, Mustafa Can 01 June 2004 (has links) (PDF)
ABSTRACT MULTIDRUG RESISTANCE IN LOCALLY ADVANCED BREAST CANCER ATALAY, Mustafa Can Ph. D., Department of Biotechnology Supervisor: Prof. Dr. Ufuk G&Uuml / ND&Uuml / Z June 2004, 70 pages Breast cancer is the most frequently detected cancer among women. Early diagnosis leads to long term survival when the patients are treated with surgery, radiotherapy, chemotherapy, and hormone therapy. Unfortunately, advanced disease could still be encountered in some patients resulting in a poorer prognosis. The primary treatment modality is chemotherapy for this group of patients. Drug resistance is a serious problem resulting in the use of different drugs during chemotherapy and knowing the possibility of resistance before initiating first line chemotherapy may save time and money, and most importantly, may increase patient&rsquo / s survival. Therefore in this study, multidrug resistance is studied in locally advanced breast cancer patients. The breast tissues obtained from 25 patients both before and after chemotherapy were examined for drug resistance. Reverse transcriptase polymerase chain reaction was used for the detection of mdr1 and mrp1 gene expression. In addition, immunohistochemistry technique was used for P-glycoprotein and MRP1 detection. JSB-1 and QCRL-1 monoclonal antibodies were utilized to detect P-glycoprotein and MRP1, respectively. Five patients were unresponsive to chemotherapy. In four of these patients mdr1 gene expression was induced by chemotherapy where as the fifth patient initially had mdr1 gene expression. In addition, Pgp positivity was detected in 9 patients after chemotherapy. Both the induction of mdr1 gene expression (p&lt / 0.001) and Pgp positivity (p&lt / 0.001) during chemotherapy were significantly related with clinical response. On the other hand, mrp1 gene expression and MRP1 positivity were detected in 68% of the patients before the therapy. After chemotherapy, mrp1 expression increased to 84%. Although 80% of the clinically unresponsive patients had mrp1 gene expression, the relation between mrp1 expression and clinical drug response was not strong. Thus, it can be concluded that in locally advanced breast cancer mdr1 gene expression during chemotherapy contributed to clinical unresponsiveness. However, mrp1 gene expression did not correlate strongly with the clinical response. When RT-PCR and immunohistochemistry methods are compared in terms of detection of drug resistance, it seems that both methods gave similar and reliable results.
166

The role of p53 in the drug resistance phenotype of childhood neuroblastoma

Xue, Chengyuan, School of Women?s & Children?s Health, UNSW January 2007 (has links)
The development of resistance to chemotherapeutic drugs is the main obstacle to the successful treatment of many cancers, including childhood neuroblastoma, the most common solid tumour of infants. One factor that may play a role in determining response of neuroblastoma tumours to therapeutic agents is the p53 tumour suppressor gene. A number of previous studies have suggested that this tumour suppressor protein is inactive in neuroblastoma due to its cytoplasmic sequestration. This thesis therefore has examined the functionality of p53 and its role in determining drug response of neuroblastoma cells. An initial study was undertaken that characterised an unusually broad multidrug resistance (MDR) phenotype of a neuroblastoma cell line (IMR/KAT100). The results demonstrated that the MDR phenotype of the IMR/KAT100 cells was associated with the acquisition of mutant p53. To explore the role of p53 in drug resistance further, p53-deficient variants in cell lines with wild-type p53 were generated by transduction of p53-suppressive constructs encoding either shRNA or a dominant-negative p53 mutant. Analysis of these cells indicated that: (i) in contrast to previous reports, wild-type p53 was fully functional in all neuroblastoma lines tested, as evidenced by its activation and nuclear translocation in response to DNA damage, transactivation of target genes and control of cell cycle checkpoints; (ii) inactivation of p53 in neuroblastoma cells resulted in establishment of an MDR phenotype; (iii) knockdown of mutant p53 did not revert the drug resistance phenotype, suggesting it is determined by loss of wild-type function rather than gain of mutant function; (iv) p53-dependent cell senescence, the primary response of S-type neuroblastoma cells to DNA damage, is replaced, after p53 inactivation, by mitotic catastrophe and subsequent apoptosis. In contrast to neuroblastoma, p53 suppression had no effect or increased drug susceptibility in several other tumour cell types, indicating the importance of tissue context for p53- mediated modulation of tumour cell sensitivity to treatment. Taken together, these data provide strong evidence for p53 having a role in mediating drug resistance in neuroblastoma and suggest that p53 status may be an important prognostic marker of treatment response in this disease.
167

Strukturbiologische Charakterisierung des ABC-Transporters LmrA aus L. lactis und des Substratbindeproteins EhuB aus S. meliloti

Hanekop, Nils. Unknown Date (has links)
Universiẗat, Diss., 2006--Frankfurt (Main).
168

Solid-state NMR investigations of the ATP binding cassette multidrug transporter LmrA

Siarheyeva, Alena. Unknown Date (has links)
University, Diss., 2006--Frankfurt (Main). / Zsfassung in engl. und dt. Sprache.
169

Pulmonary tuberculosis and HIV interaction in a setting with a high prevalence of HIV : clinical, diagnostic and epidemiological aspects /

Bruchfeld, Judith, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 4 uppsatser.
170

Molecular epidemiology of tuberculosis

Petersson, Ramona. January 2009 (has links)
Lic.-avh. (sammanfattning) Stockholm : Karolinska institutet, 2009.

Page generated in 0.0521 seconds