• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and simulation of building components : thermal interaction between multilayer wall and hydronic radiator

Brembilla, Christian January 2016 (has links)
Background and Scope: The scope of this thesis is to investigate the thermal behaviour of building components as hydronic radiator and multilayer walls subjected to dynamic conditions. The modelling and simulation of these building components provide information on how these components thermally interact among each other. The thermal interaction is fundamental to know how the energy is used in buildings. In particular, the thermal energy used in rooms can be expressed as the efficiencies for emission in a space heating system. This thesis analyzes the efficiencies for emission of a space heating system equipped with hydronic radiator for Swedish buildings by providing a comprehensive and detailed approach on this topic. Methodology: The methods used in this thesis are: experiment, modelling of multilayer wall and hydronic radiator, the dynamic simulation of the building and the efficiencies for emission of a space heating system. Here, the experiment, known as step response test, shows the heating up process of a hydronic radiator. The observation of the qualitative measurements suggests the most suitable technique of modelling the radiator known as transient modelling with multiple storage elements. The multilayer wall has been discretized both in space and time variable with a Finite Difference Method. Dynamic simulation of the building provides the efficiencies for emission of a space heating system. Findings: The experimental results show how the radiator performs the charging phase. The performance of the transient model is compared with lumped steady state models in terms of temperature of exhaust flow and total heat emitted. Results of the dynamic simulation show how buildings located in a Northern climate use the energy in a better way than Southern climates in Sweden. Heavy active thermal mass provides higher efficiencies for emission than light thermal mass. Radiators with connection pipes located on the same side react faster at the thermodynamic changing of the mass flow rate by providing higher efficiencies for emission than radiators with connection pipes located on the opposite side. Conclusion and Outlook: This thesis increases the knowledge about the modelling and simulation of hydronic radiators and multilayer walls. More research is needed on this topic to encompass modelling details of building components often ignored. The modelling and simulation of building components are the key to understand how building components thermally interact with each other. The thermal interaction among building components is a fundamental parameter for the assessment of efficiencies of emission of the space heating system. In the near future, the concept of efficiencies of emission can be implemented in National Building Code, therefore, this study provides guidelines on how to assess these efficiencies. / <p>Advisors: Ronny Östin and Mohsen Soleimanni Mohseni, Department of Applied Physics and Electronics, Umeå University</p>
2

Thermographie active appliquée à la caractérisation in situ de parois de bâtiment / Active thermal applied in situ characterization of building walls

Chaffar, Khaled 11 July 2012 (has links)
Les préoccupations environnementales actuelles visent à réduire les consommations énergétiques. Dans une démarche d’amélioration des bâtiments existants, l'étude du comportement thermique d’une paroi n'est pas aisée du fait de la méconnaissance de ses propriétés thermophysiques réelles. Ces paramètres sont pourtant prépondérants pour la phase d'optimisation économique des opérations de réhabilitation ou pour vérifier ses performances in situ. Il apparaît donc important de pouvoir caractériser les parois de bâtiment en place. Notre travail vise à développer une méthode de caractérisation thermique d’une paroi adaptée aux applications in situ basée sur une approche active. Le principe d'identification consiste à solliciter thermiquement une face d’accès en imposant un flux de chaleur sous forme d’un créneau et à étudier la réponse en température enregistrée par thermographie infrarouge sur l’autre face. A partir de signaux de flux et de températures mesurés aux limites de la paroi, les propriétés thermophysiques de la paroi seront estimées par méthode inverse. Nous nous sommes dans un premier temps intéressés aux parois homogènes. Le schéma d’inversion est construit autour d’un modèle numérique décrivant la réponse de la paroi suivant la méthode des différences finies en 1D. L’identification de la conductivité thermique et de la chaleur volumique de la paroi est réalisée en optimisant le groupement de paramètres qui permet de minimiser l’écart entre la température normalisée mesurée et la température normalisée simulée. Le coefficient d’échange surfacique global est également identifié à partir du même essai. Dans ce travail, la méthode a été appliquée à une paroi homogène en carreaux de plâtre mise en place au laboratoire. Elle a une épaisseur de 6.5 cm. Cette technique a été utilisée pour les parois multicouches de bâtiments. Les résultats issus de cette procédure d’inversion ont été comparés à des valeurs de référence obtenues à partir d’une procédure classique (NF EN 12664-méthode fluxmétrique). Une bonne concordance des résultats est obtenue. Une autre partie représente les essais in situ. / Current environmental concerns are intended to reduce energy consumption. In a process of improving existing buildings, the study of the thermal behavior of a wall is not easy because of the ignorance of its real thermophysical properties. These parameters are yet to dominate the economic optimization phase of the rehabilitation or to check its performance in situ. It therefore appears important to characterize the walls of existing building. Our work aims to develop a method of thermal characterization of a wall suitable for in situ applications based on an active approach. The principle of identification is to apply a heat-face access by imposing a heat flux in the form of a pulse and to study the temperature response recorded by infrared thermography on the other side. From signal flow and temperature measured at the limits of the wall, the thermophysical properties of the wall will be estimated by inverse method. We are at present interested in homogeneous walls. The inversion scheme is built around a digital model describing the response of the wall following the finite difference method in 1D. The identification of the thermal conductivity and heat volume of the wall is achieved by optimizing the group of parameters which minimizes the normalized difference between the temperature measured and the temperature standard simulated. The overall Global exchange coefficient is also identified from the same test. In this work, the method was applied to a homogeneous wall tile plaster introduction to the laboratory. It has a thickness of 6.5 cm. This technique was used for multilayer walls of buildings. The results of this inversion procedure were compared with reference values obtained from a standard procedure (DIN EN 12664-flow meter methods). A good agreement is obtained. Another part is the in situ tests.

Page generated in 0.0638 seconds