1 |
Algorithms, protocols and services for scalable multimedia streamingChae, Youngsu January 2002 (has links)
No description available.
|
2 |
Scalable real-time architectures and hardware support for high-speed QoS packet schedulersKrishnamurthy, Rajaram B. January 2003 (has links)
No description available.
|
3 |
On design and implementation of parallel video serversLin, Chow Sing 01 April 2000 (has links)
No description available.
|
4 |
Q-Fabric: System Support for Continuous Online Quality ManagementPoellabauer, Christian 12 April 2004 (has links)
The explosive growth in networked systems and applications and the increase in device capabilities (as evidenced by the availability of inexpensive multimedia devices) enable novel complex distributed applications, including video conferencing, on-demand computing services, and virtual environments. These applications' need for high performance, real-time, or reliability requires the provision of Quality of Service (QoS) guarantees along the path of information exchange between two or more communicating systems. Execution environments that are prone to dynamic variability and uncertainty make QoS provision a challenging task, e.g., changes in user behavior, resource requirements, resource availabilities, or system failures are difficult or even impossible to predict. Further, with the coexistence of multiple adaptation techniques and resource management mechanisms, it becomes increasingly important to provide an integrated or cooperative approach to distributed QoS management.
This work's goals are the provision of system-level tools needed for the efficient integration of multiple adaptation approaches available at different layers of a system (e.g., application-level, operating system, or network) and the use of these tools such that distributed QoS management is performed efficiently with predictable results. These goals are addressed constructively and experimentally with the Q-Fabric architecture, which provides the required system-level mechanisms to efficiently integrate multiple adaptation techniques. The foundation of this integration is the event-based communication implemented by it, realizing a loosely-coupled group communication approach frequently found in multi-peer applications. Experimental evaluations are performed in the context of a mobile multimedia application, where the focus is directed toward efficient energy consumption on battery-operated devices. Here, integration is particularly important to prevent multiple energy management techniques found on modern mobile devices to negate the energy savings of each other.
|
5 |
Adaptive Error Control for Wireless MultimediaYankopolus, Andreas George 13 April 2004 (has links)
Future wireless networks will be required to support multimedia traffic in addition to traditional best-effort network services. Supporting multimedia traffic on wired networks presents a large number of design problems, particularly for networks that run connectionless data transport protocols such as the TCP/IP protocol suite. These problems are magnified for wireless links, as the quality of such links varies widely and uncontrollably.
This dissertation presents new tools developed for the design and realization of wireless networks including, for the first time, analytical channel models for predicting the efficacy of error control codes, interleaving schemes, and signalling protocols, and several novel algorithms for matching and adapting system parameters (such as error control and frame length) to time-varying channels and Quality of Service (QoS) requirements.
|
Page generated in 0.089 seconds