Spelling suggestions: "subject:"multimodal neuroimaging""
1 |
Graphene Quantum Dots as Fluorescent and Passivation Agents for Multimodal Bioimaging / Grafen-Kvantprickar som Fluorescerande Passiveringsmedel för Multimodal BioavbildningKilic, Nüzhet Inci January 2021 (has links)
Zero-dimensional graphene (carbon) quantum dots have been drawing attention in bio-related applications since their discovery, especially for their optical properties, chemical stability, and easily modifiable surface. This thesis focuses on the green synthesis of nitrogen-doped graphene quantum dots (GQDs) for dual-mode bioimaging with X-ray fluorescence (XRF) and optical fluorescence. Both conventional and microwave- (MW-)assisted solvothermal methods were followed to investigate the precursors’ effect on the synthesized GQDs. The MW-assisted method permitted the synthesis of uniform GQDs with an excitation-independent behavior, due to highly controllable reaction conditions. It was demonstrated that the molecular structure of the precursors influenced the optical fluorescence properties of the GQDs. Thus, both blue- (BQDs) and red-emitting (RQDs) GQDs were obtained by selecting specific precursors, leading to emission maxima at 438 and 605 nm under the excitation wavelengths of 390 and 585 nm, respectively. Amine-functionalized Rh nanoparticles (NPs) were chosen as the X-ray fluorescence (XRF) active core, synthesized via MW-assisted hydrothermal method with a custom designed sugar ligand as the reducing agent. These NPs were conjugated with BQDs using EDC-NHS treatment. The hybrid Rh-GQDs NPs exhibited green emission (520 nm) under 490 nm excitation and led to a reduced cytotoxicity with respect to bare Rh NPs, highlighting the passivation role of the GQDs via the real-time cell analysis (RTCA) assay. The hybrid complex constituted a multimodal bioimaging contrastagent, tested with confocal microscopy (in vitro) and XRF phantom experiments. / Sedan deras upptäckt har nolldimensionella kvantprickar av grafen (kol) uppmärksammats inom biorelaterade applikationer, särskilt för deras optiska egenskaper, kemiska stabilitet och enkelt modifierbara yta. Denna avhandling fokuserar på en grön syntesmetod av kvävedopade grafen-kvantprickar för bimodal bioavbildning med röntgenfluorescens och optisk fluorescens. Både konventionella och mikrovågs-assisterade solvotermiska syntesmetoder användes för att undersöka metodernas effekt på de syntetiserade kvantprickarna. Den mikrovågs-assisterade metoden möjliggjorde syntes av uniforma kvantprickar med exciteringsoberoende egenskaper på grund av mycket kontrollerbara reaktionsförhållanden. Det demonstrerades att den molekylära strukturen hos prekursorerna påverkade de optiska fluorescensegenskaperna hos grafen-kvantprickarna. Genom att välja specifika prekursorer erhölls kvantprickar som emitterar i både blått och rött ljus, motsvarande emissionsmaxima vid 438 respektive 605 nm under excitering vid 390 respektive 585 nm. Amin-funktionaliserade Rh-nanopartiklar valdes som en aktiv kärna för röntgenfluorescens, syntetiserad genom en mikrovågs-assisterad hydrotermisk metod med en specialdesignad sockerligand som reduktionsmedel. Dessa nanopartiklar konjugerades med blåemitterande kvantprickar genom EDC-NHS-behandling. De hybrida nanopartiklarna uppvisade grön emission (520 nm) under 490 nm excitation och ledde till en minskad cytotoxicitet uppmätt genom cellanalys i realtid (RTCA) jämfört med endast Rh-nanopartiklar, vilket framhävde passiveringsrollen som kvantprickarna spelar. Hybridkomplexet utgjorde ett multimodalt kontrastmedel för bioavbildning, vilket demonstrerades med konfokalmikroskopi (in vitro) och fantomexperiment med röntgenfluorescens.
|
Page generated in 0.0872 seconds