• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation of energy detection thresholds and error probability for amplitude-modulated short-range communication radios

Anttonen, A. (Antti) 30 November 2011 (has links)
Abstract In this thesis, novel data and channel estimation methods are proposed and analyzed for low-complexity short-range communication (SRC) radios. Low complexity is challenging to achieve especially in very wideband or millimeter-wave SRC radios where phase recovery and energy capture from numerous multipaths easily become a bottleneck for system design. A specific type of transceiver is selected using pulse amplitude modulation (PAM) at the transmitter and energy detection (ED) at the receiver, and it is thus called an ED-PAM system. Nonnegative PAM alphabets allow using an ED structure which enables a phase-unaware detection method for avoiding complicated phase recovery at the receiver. Moreover, the ED-PAM approach results in a simple multipath energy capture, and only one real decision variable, whose dimension is independent of the symbol alphabet size, is needed. In comparison with optimal phase-aware detection, the appealing simplicity of suboptimal ED-PAM systems is achieved at the cost of the need for a higher transmitted signal energy or shorter link distance for obtaining a sufficient signal-to-noise ratio (SNR) at the receiver, as ED-PAM systems are more vulnerable to the effects of noise and interference. On the other hand, the consequences of requiring a higher SNR may not be severe in the type of SRC scenarios where a sufficient received SNR is readily available due to a short link distance. Furthermore, significant interference can be avoided by signal design. However, what has slowed down the development of ED-PAM systems is that efficient symbol decision threshold estimation and related error probability analysis in multipath fading channels have remained as unsolved problems. Based on the above observations, this thesis contributes to the state-of-the-art of the design and analysis for ED-PAM systems as follows. Firstly, a closed-form near-optimal decision threshold selection method, which adapts to a time-varying channel gain and enables an arbitrary choice of the PAM alphabet size and an integer time-bandwidth product of the receiver filters, is proposed. Secondly, two blind estimation schemes of the parameters for the threshold estimation are introduced. Thirdly, analytical error probability evaluation in frequency-selective multipath fading channels is addressed. Special attention is given to lognormal fading channels, which are typically used to model very wideband SRC multipath channels. Finally, analytical error probability evaluation with nonideal parameter estimation is presented. The results can be used in designing low-complexity transceivers for very wideband and millimeter-wave wireless SRC devices of the future. / Tiivistelmä Tässä työssä esitetään ja analysoidaan uusia data- ja kanavaestimointimenetelmiä, joiden tavoitteena on yksinkertaistaa lähikommunikaatiota (short-range communication, SRC) langattomien laitteiden välillä. SRC-radioiden yksinkertainen toteutus on poikkeuksellisen haasteellista silloin, kun käytetään erittäin suurta kaistanleveyttä tai millimetriaaltoalueen tiedonsiirtoa. Tällöin vastaanottimen yksinkertaisen toteutuksen voivat estää esimerkiksi kantoaallon vaiheen estimointi ja signaalienergian kerääminen lukuisilta kanavan monitiekomponenteilta. Näistä lähtökohdista valitaan SRC-radion järjestelmämalliksi positiiviseen pulssiamplitudimodulaatioon (pulse amplitude modulation, PAM) perustuva lähetin ja energiailmaisimeen (energy detection, ED) perustuva vastaanotin. ED-PAM-järjestelmän ei tarvitse tietää vastaanotetun signaalin vaihetta ja signaalienergian kerääminen tapahtuu yksinkertaisen diversiteettiyhdistelytekniikan avulla. Lisäksi ilmaisuun tarvitaan vain yksi reaalinen päätösmuuttuja, jonka dimensio on riippumaton PAM-tasojen määrästä. ED-PAM-tekniikan yksinkertaisuutta optimaaliseen vaihetietoiseen ilmaisuun verrattuna ei saavuteta ilmaiseksi. Yhtenä rajoituksena on alioptimaalisen ED-PAM-tekniikan luontainen taipumus vahvistaa kohinan ja häiriöiden vaikutusta symbolin päätöksenteossa. Kohinan vahvistus ei välttämättä ole suuri ongelma niissä SRC-radioissa, joissa pienen linkkietäisyyden johdosta riittävä signaali-kohinasuhde vastaanottimessa voidaan kohinan vahvistuksesta huolimatta saavuttaa. Myös häiriöiden vahvistuksen vaikutusta voidaan tehokkaasti vähentää signaalisuunnittelulla. Joka tapauksessa ED-PAM-tekniikan käyttöönottoa on hidastanut tehokkaiden symbolipäätöskynnysten estimointi- ja analysointimenetelmien puuttuminen. Edellä mainitut havainnot ovat motivoineet löytämään uusia suunnittelu- ja analyysimenetelmiä ED-PAM-järjestelmille seuraavasti. Symbolipäätöskynnysten estimointiin johdetaan lähes optimaalinen suljetun muodon menetelmä, joka kykenee adaptoitumaan muuttuvassa kanavassa ja valitsemaan mielivaltaisen kokonaisluvun sekä PAM-tasojen määrälle että vastaanottimen aika-kaistanleveystulolle. Lisäksi esitetään kaksi sokeaa päätöskynnysten estimointimenetelmää, jotka eivät tarvitse redundanttista opetussignaalia. Työn toisessa osassa ED-PAM-järjestelmän symbolivirhesuhdetta analysoidaan taajuusselektiivisessä monitiekanavassa. Analyysissä keskitytään log-normaalijakauman mukaan häipyvään kanavaan. Seuraavaksi analyysia laajennetaan ottamalla mukaan epäideaalisten kynnysarvojen estimoinnin vaikutus. Saavutettuja tuloksia voidaan hyödyntää erittäin laajakaistaisten ja millimetriaaltoalueen SRC-laitteiden suunnittelussa.
2

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.
3

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.

Page generated in 0.108 seconds