• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

Skala, Melissa Caroline, January 2007 (has links) (PDF)
Thesis (Ph. D.)--Duke University, 2007. / Includes bibliographical references.
2

Applications of microfluidics and optical manipulation for photoporation and imaging

Rendall, Helen A. January 2015 (has links)
Optical manipulation covers a wide range of techniques to guide and trap cells using only the forces exerted by light. Another optical tool is photoporation, the technique of injecting membrane-impermeable molecules using light, which has become an important alternative to other injection techniques. Together they provided sterile tools for manipulation and molecule delivery at the single-cell level. In this thesis, the properties of low Reynolds fluid flows are exploited to guide cells though a femtosecond Bessel beam. This design allows for high-throughput optical injection of cells without the need to individually target cells. A method of 'off-chip' hydrodynamic focusing was evaluated and was found to confine 95.6% of the sample within a region which would receive a femtosecond dose compared to 20% without any hydrodynamic focusing. The system was tested using two cell lines to optically inject the membrane-impermeable dye, propidium iodide. This resulted in an increase of throughput by an order of magnitude compared to the previous microfluidic design (to up to 10 cells per second). Next optical trapping and photoporation were combined to create a multimodal workstation. The system provides 3D beam control using spatial light modulators integrated into a custom user interface. The efficiency of optical injection of adherent cells and trapping capabilities were tested. The development of the system provides the groundwork for exploration of the parameters required for photoporation of non-adherent cells. Finally optical trapping is combined with temporally focused multiphoton illumination for scanless imaging. The axial resolution of the system was measured using different microscope objectives before imaging cells stained with calcein. Both single and a pair of recently trypsinised cells were optically trapped and imaged. The position of the trapped cells was manipulated using a spatial light modulator in order to obtain a z-stack of images without adjusting the objective position.
3

Thick brain slice cultures and a custom-fabricated multiphoton imaging system: progress towards development of a 3D hybrot model

Rambani, Komal 11 January 2007 (has links)
Development of a three dimensional (3D) HYBROT model with targeted in vivo like intact cellular circuitry in thick brain slices for multi-site stimulation and recording will provide a useful in vitro model to study neuronal dynamics at network level. In order to make this in vitro model feasible, we need to develop several associated technologies. These technologies include development of a thick organotypic brain slice culturing method, a three dimensional (3D) micro-fluidic multielectrode Neural Interface system (µNIS) and the associated electronic interfaces for stimulation and recording of/from tissue, development of targeted stimulation patterns for closed-loop interaction with a robotic body, and a deep-tissue non-invasive imaging system. To make progress towards this goal, I undertook two projects: (i) to develop a method to culture thick organotypic brain slices, and (ii) construct a multiphoton imaging system that allows long-term and deep-tissue imaging of two dimensional and three dimensional cultures. Organotypic brain slices preserve cytoarchitecture of the brain. Therefore, they make more a realistic reduced model for various network level investigations. However, current culturing methods are not successful for culturing thick brain slices due to limited supply of nutrients and oxygen to inner layers of the culture. We developed a forced-convection based perfusion method to culture viable 700µm thick brain slices. Multiphoton microscopy is ideal for imaging living 2D or 3D cultures at submicron resolution. We successfully fabricated a custom-designed high efficiency multiphoton microscope that has the desired flexibility to perform experiments using multiple technologies simultaneously. This microscope was used successfully for 3D and time-lapse imaging. Together these projects have contributed towards the progress of development of a 3D HYBROT. ----- 3D Hybrot: A hybrid system of a brain slice culture embodied with a robotic body.
4

The Effects of Refractive Index Mismatch on Multiphoton Fluorescence Excitation Microscopy of Biological Tissue

Young, Pamela Anne 31 August 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Introduction: Multiphoton fluorescence excitation microscopy (MPM) is an invaluable tool for studying processes in tissue in live animals by enabling biologists to view tissues up to hundreds of microns in depth. Unfortunately, imaging depth in MPM is limited to less than a millimeter in tissue due to spherical aberration, light scattering, and light absorption. Spherical aberration is caused by refractive index mismatch between the objective immersion medium and sample. Refractive index heterogeneities within the sample cause light scattering. We investigate the effects of refractive index mismatch on imaging depth in MPM. Methods: The effects of spherical aberration on signal attenuation and resolution degradation with depth are characterized with minimal light absorption and scattering using sub-resolution microspheres mounted in test sample of agarose with varied refractive index. The effects of light scattering on signal attenuation and resolution degradation with depth are characterized using sub-resolution microspheres in kidney tissue samples mounted in optical clearing media to alter the refractive index heterogeneities within the tissue. Results: The studies demonstrate that signal levels and axial resolution both rapidly decline with depth into refractive index mismatched samples. Interestingly, studies of optical clearing with a water immersion objective show that reducing scattering increases reach even when it increases refractive index mismatch degrading axial resolution. Scattering, in the absence of spherical aberration, does not degrade axial resolution. The largest improvements in imaging depth are obtained when both scattering and refractive index mismatch are reduced. Conclusions: Spherical aberration, caused by refractive index mismatch between the immersion media and sample, and scattering, caused by refractive index heterogeneity within the sample, both cause signal to rapidly attenuate with depth in MPM. Scattering, however, seems to be the predominant cause of signal attenuation with depth in kidney tissue. Kenneth W. Dunn, Ph.D., Chair
5

In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging

Freeman, Kim Renee 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The sympathetic nervous system strongly modulates the contractile and electrical function of the heart. The anatomical underpinnings that enable a spatially and temporally coordinated dissemination of sympathetic signals within the cardiac tissue are only incompletely characterized. In this work we took the first step of unraveling the in situ 3D microarchitecture of the cardiac sympathetic nervous system. Using a combination of two-photon excitation fluorescence microscopy and computer-assisted image analyses, we reconstructed the sympathetic network in a portion of the left ventricular epicardium from adult transgenic mice expressing a fluorescent reporter protein in all peripheral sympathetic neurons. The reconstruction revealed several organizational principles of the local sympathetic tree that synergize to enable a coordinated and efficient signal transfer to the target tissue. First, synaptic boutons are aligned with high density along much of axon-cell contacts. Second, axon segments are oriented parallel to the main, i.e., longitudinal, axes of their apposed cardiomyocytes, optimizing the frequency of transmitter release sites per axon/per cardiomyocyte. Third, the local network was partitioned into branched and/or looped sub-trees which extended both radially and tangentially through the image volume. Fourth, sub-trees arrange to not much overlap, giving rise to multiple annexed innervation domains of variable complexity and configuration. The sympathetic network in the epicardial border zone of a chronic myocardial infarction was observed to undergo substantive remodeling, which included almost complete loss of fibers at depths >10 µm from the surface, spatially heterogeneous gain of axons, irregularly shaped synaptic boutons, and formation of axonal plexuses composed of nested loops of variable length. In conclusion, we provide, to the best of our knowledge, the first in situ 3D reconstruction of the local cardiac sympathetic network in normal and injured mammalian myocardium. Mapping the sympathetic network connectivity will aid in elucidating its role in sympathetic signal transmisson and processing.
6

Hydrodynamic delivery for the study, treatment and prevention of acute kidney injury

Corridon, Peter R. 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Advancements in human genomics have simultaneously enhanced our basic understanding of the human body and ability to combat debilitating diseases. Historically, research has shown that there have been many hindrances to realizing this medicinal revolution. One hindrance, with particular regard to the kidney, has been our inability to effectively and routinely delivery genes to various loci, without inducing significant injury. However, we have recently developed a method using hydrodynamic fluid delivery that has shown substantial promise in addressing aforesaid issues. We optimized our approach and designed a method that utilizes retrograde renal vein injections to facilitate widespread and persistent plasmid and adenoviral based transgene expression in rat kidneys. Exogenous gene expression extended throughout the cortex and medulla, lasting over 1 month within comparable expression profiles, in various renal cell types without considerably impacting normal organ function. As a proof of its utility we by attempted to prevent ischemic acute kidney injury (AKI), which is a leading cause of morbidity and mortality across among global populations, by altering the mitochondrial proteome. Specifically, our hydrodynamic delivery process facilitated an upregulated expression of mitochondrial enzymes that have been suggested to provide mediation from renal ischemic injury. Remarkably, this protein upregulation significantly enhanced mitochondrial membrane potential activity, comparable to that observed from ischemic preconditioning, and provided protection against moderate ischemia-reperfusion injury, based on serum creatinine and histology analyses. Strikingly, we also determined that hydrodynamic delivery of isotonic fluid alone, given as long as 24 hours after AKI is induced, is similarly capable of blunting the extent of injury. Altogether, these results indicate the development of novel and exciting platform for the future study and management of renal injury.

Page generated in 0.1334 seconds