• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of microRNA-709 in murine liver

Surendran, Sneha January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / MicroRNAs are small RNA molecules that regulate expression of genes involved in development, cell differentiation, proliferation and death. It has been estimated that in eukaryotes, approximately 0.5 to 1% of predicted genes encode a microRNA, which in humans, regulate at least 30% of genes at an average of 200 genes per miRNA. Some microRNAs are tissue-specific, while others are ubiquitously expressed. In liver, a few microRNAs have been identified that regulate specialized functions. The best known is miR-122, the most abundant liver-specific miRNA, which regulates cholesterol biosynthesis and other genes of fatty acid metabolism; it also regulates the cell cycle through inhibition of cyclin G1. To discover other miRNAs with relevant function in liver, we characterized miRNA profiles in normal tissue and identified miR-709. Our data indicates this is a highly abundant hepatic miRNA and is dysregulated in an animal model of type 2 diabetes. To understand its biological role, miR-709 gene targets were identified by analyzing the transcriptome of primary hepatocytes transfected with a miR-709 mimic. The genes identified fell within four main categories: cytoskeleton binding, extracellular matrix attachment, endosomal recycling and fatty acid metabolism. Thus, similar to miR-122, miR-709 downregulates genes from multiple pathways. This would be predicted, given the abundance of the miRNA and the fact that the estimated number of genes targeted by a miRNA is in the hundreds. In the case of miR-709, these suggested a coordinated response during cell proliferation, when cytoskeleton remodeling requires substantial changes in gene expression. Consistently, miR-709 was found significantly upregulated in an animal model of hepatocellular carcinoma. Likewise, in a mouse model of liver regeneration, mature miR-709 was increased. To study the consequences of depleting miR-709 in quiescent and proliferating cells, primary hepatocytes and hepatoma cells were cultured with antagomiRs (anti-miRs). The presence of anti-miR-709 caused cell death in proliferating cells. Quiescent primary hepatocytes responded by upregulating miR-709 and its host gene, Rfx1. These studies show that miR-709 targets genes relevant to cystokeleton structural genes. Thus, miR-709 and Rfx1 may be needed to facilitate cytoskeleton reorganization, a process that occurs after liver injury and repopulation, or during tumorigenesis.
2

The role of pyruvate dehydrogenase kinase in glucose and ketone body metabolism

Rahimi, Yasmeen 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The expression of pyruvate dehydrogenase kinase (PDK) 2 and 4 are increased in the fasted state to inactivate the pyruvate dehydrogenase complex (PDC) by phosphorylation to conserve substrates for glucose production. To assess the importance of PDK2 and PDK4 in regulation of the PDC to maintain glucose homeostasis, PDK2 knockout (KO), PDK4 KO, and PDK2/PDK4 double knockout (DKO) mice were generated. PDK2 deficiency caused higher PDC activity and lower blood glucose levels in the fed state while PDK4 deficiency caused similar effects in the fasting state. DKO intensified these effects in both states. PDK2 deficiency had no effect on glucose tolerance, PDK4 deficiency produced a modest effect, but DKO caused a marked improvement, lowered insulin levels, and increased insulin sensitivity. However, the DKO mice were more sensitive than wild-type mice to long term fasting, succumbing to hypoglycemia, ketoacidosis, and hypothermia. Stable isotope flux analysis indicated that hypoglycemia was due to a reduced rate of gluconeogenesis. We hypothesized that hyperglycemia would be prevented in DKO mice fed a high saturated fat diet for 30 weeks. As expected, DKO mice fed a high fat diet had improved glucose tolerance, decreased adiposity, and were euglycemic due to reduction in the rate of gluconeogenesis. Like chow fed DKO mice, high fat fed DKO mice were unusually sensitive to fasting because of ketoacidosis and hypothermia. PDK deficiency resulted in greater PDC activity which limited the availability of pyruvate for oxaloacetate synthesis. Low oxaloacetate resulted in overproduction of ketone bodies by the liver and inhibition of ketone body and fatty acid oxidation by peripheral tissues, culminating in ketoacidosis and hypothermia. Furthermore, when fed a ketogenic diet consisting of low carbohydrate and high fat, DKO mice also exhibited hypothermia, ketoacidosis, and hypoglycemia. The findings establish that PDK2 is more important in the fed state, PDK4 is more important in the fasted state, survival during long term fasting depends upon regulation of the PDC by both PDK2 and PDK4, and that the PDKs are important for the regulation of glucose and ketone body metabolism.
3

An IL-4-dependent macrophage-iNKT cell circuit resolves sterile inflammation and is defective in mice with chronic granulomatous disease

Zeng, Melody Yue 03 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The immune system initiates tissue repair following injury. In response to sterile tissue injury, neutrophils infiltrate the tissue to remove tissue debris and subsequently undergo apoptosis. Proper clearance of apoptotic neutrophils in the tissue by recruited macrophages, in a process termed efferocytosis, is critical to facilitate the resolution of inflammation and tissue repair. However, the events leading to suppression of sterile inflammation following efferocytosis, and the contribution of other innate cell types are not clearly defined in an in vivo setting. Using a sterile mouse peritonitis model, we identified IL-4 production from efferocytosing macrophages in the peritoneum that activate invariant NKT cells to produce cytokines including IL-4 and IL-13. Importantly, IL-4 from macrophages functions in autocrine and paracrine circuits to promote alternative activation of peritoneal exudate macrophages and augment type-2 cytokine production from NKT cells to suppress inflammation. The increased peritonitis in mice deficient in IL-4, NKT cells, or IL-4Ra expression on myeloid cells suggested that each is a key component for resolution of sterile inflammation. The phagocyte NADPH oxidase, a multi-subunit enzyme complex we demonstrated to require a physical interaction between the Rac GTPase and the oxidase subunit gp91phox for generation of reactive oxygen species (ROS), is required for production of ROS within macrophage phagosomes containing ingested apoptotic cells. In mice with X-linked chronic granulomatous disease (X-CGD) that lack gp91phox, efferocytosing macrophages were unable to produce ROS and were defective in activating iNKT during sterile peritonitis, resulting in enhanced and prolonged inflammation. Thus, efferocytosis-induced IL-4 production and activation of IL-4-producing iNKT cells by macrophages are immunomodulatory events in an innate immune circuit required to resolve sterile inflammation and promote tissue repair.
4

In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging

Freeman, Kim Renee 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The sympathetic nervous system strongly modulates the contractile and electrical function of the heart. The anatomical underpinnings that enable a spatially and temporally coordinated dissemination of sympathetic signals within the cardiac tissue are only incompletely characterized. In this work we took the first step of unraveling the in situ 3D microarchitecture of the cardiac sympathetic nervous system. Using a combination of two-photon excitation fluorescence microscopy and computer-assisted image analyses, we reconstructed the sympathetic network in a portion of the left ventricular epicardium from adult transgenic mice expressing a fluorescent reporter protein in all peripheral sympathetic neurons. The reconstruction revealed several organizational principles of the local sympathetic tree that synergize to enable a coordinated and efficient signal transfer to the target tissue. First, synaptic boutons are aligned with high density along much of axon-cell contacts. Second, axon segments are oriented parallel to the main, i.e., longitudinal, axes of their apposed cardiomyocytes, optimizing the frequency of transmitter release sites per axon/per cardiomyocyte. Third, the local network was partitioned into branched and/or looped sub-trees which extended both radially and tangentially through the image volume. Fourth, sub-trees arrange to not much overlap, giving rise to multiple annexed innervation domains of variable complexity and configuration. The sympathetic network in the epicardial border zone of a chronic myocardial infarction was observed to undergo substantive remodeling, which included almost complete loss of fibers at depths >10 µm from the surface, spatially heterogeneous gain of axons, irregularly shaped synaptic boutons, and formation of axonal plexuses composed of nested loops of variable length. In conclusion, we provide, to the best of our knowledge, the first in situ 3D reconstruction of the local cardiac sympathetic network in normal and injured mammalian myocardium. Mapping the sympathetic network connectivity will aid in elucidating its role in sympathetic signal transmisson and processing.
5

Effects of coadministration of D-Napvsipq [NAP] and D-Sallrsipa [SAL] on spatial learning after developmental alcohol exposure

Wagner, Jennifer Lynne January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Despite warnings about the dangers of drinking during pregnancy, little progress has been made in reducing alcohol drinking among women of childbearing age. Even after the recognition of pregnancy, 15% of women continue to drink, 3% of which admit to binge drinking. Because we cannot stop women from drinking during pregnancy, and many children with fetal alcohol spectrum disorders (FASD) are adopted, there is a significant need to develop postnatal interventions that can improve the long-term outcome of children adversely affected by prenatal alcohol exposure. This thesis aims to evaluate one promising new treatment in the rehabilitation or rescue of specific learning deficits long after the damage has occurred. The treatment evaluated herein (40µg D-NAP + 40µg D-SAL) has long been used in the prevention of the detrimental effects of long-term and binge-like alcohol exposures in rodent models of fetal alcohol syndrome and FASD. Until recently this peptide treatment had only been shown to be effective in preventing some of the consequences of alcohol exposure when administered concurrently with the prenatal alcohol exposure. A recent report by Incerti and colleagues (2010c), however, reported that these peptides could completely reverse a profound spatial learning deficit induced by one episode of a heavy binge-like alcohol exposure (5.9g.kg in a single intraperitoneal injection) on gestational day 8 (G8) in C57BL/6 mice. In that report, the peptide treatment was administered starting in late adolescence, beginning three days prior to and throughout water maze training, and the profound deficits in their alcohol-placebo group were completely eliminated in the alcohol-peptide group. There are currently no FDA-approved treatments for FASD. An effective treatment for the cognitive and behavioral dysfunctions suffered by the 1% of people born today could potentially improve the lives of millions of children and adults. The first aim of this thesis was to determine whether the peptide treatment could reverse the significant spatial learning deficits we have demonstrated in adult C57BL/6 mice given high-dose binge-like alcohol exposure (2.5 g/kg in each of two intraperitoneal injections separated by two hours) on postnatal day (P)7. When administered three days prior to and throughout water maze testing (P67-76), the peptide treatment had no effect on spatial learning. The second aim sought to determine whether the same peptide treatment could reverse water maze spatial learning deficits in G8 binge-like exposure models, as reported by Incerti et al. (2010c). For this analysis, the first study used a different binge-like alcohol exposure model that is more commonly used than that employed by the Incerti et al. (2010c) study, namely administration of 2.8g/kg in each of two intraperitoneal injections separated by four hours (Sulik et al., 1981). This model has been shown to produce high peak blood alcohol concentrations and neuroanatomical aberrations in the hippocampal formation and septal regions (Parnell et al., 2009), which have been implicated in learning and memory. Surprisingly, this G8 binge-like alcohol exposure failed to produce a spatial learning deficit, undermining the usefulness of this model in evaluating the peptide effects. In direct contrast to the outcomes of Incerti et al. (2010c), the G8 Webster alcohol exposure was also unable to produce any deficits in acquisition of spatial learning in the Morris water maze. Surprisingly, neither of the heavy binge-like alcohol exposures on G8 were able to produce spatial learning deficits in the Morris water maze. The binge-like alcohol exposure on P7 did yield the expected spatial learning deficit, but the peptide treatment was unsuccessful in recovering water maze learning. These findings fail to support oral administration of 40µg D-NAP and 40 µg D-SAL as a potential therapy for postnatal alcohol-induced spatial learning deficits in adult mice.

Page generated in 0.1267 seconds