• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Degenerate Oligonucleotide Primed - Polymerase Chain Reaction Evaluation And Optimization To Improve Downstream Forensic STR Analysis Of Low Quality/Low Quantity DNA

Thompson, Lindsay Paige 01 January 2006 (has links)
When forensic biological samples yield low quality/low quantity DNA, thecurrent STR analysis methods do not generate acceptable profiles. Whole genomeamplification can be used to pre-amplify the entire genome for downstream analyses. A commercially available kit for DOP-PCR, a form of WGA, is currently being used in the clinical for downstream single locus targets. Forensic analyses utilize a multiplex amplification. This study determined that the "home brew" created by our lab performs the same as the commercially available kit. Future optimization studies of DOP-PCR can utilize this "home brew". Additionally, this research determined that a 10 second increase in electrokinetic injection time onto the Capillary Electrophoresis (CE) in combination with a post-STR amplification purification and elution into formamide produces a slightly higher percent STR allele success over the standard protocol. After future optimization studies, this may be a useful method to obtain more accurate and complete STR profiles from low quality/low quantity biological samples.
2

Interpreting the human transcriptome

Werne Solnestam, Beata January 2015 (has links)
The human body is made of billions of cells and nearly all have the same genome. However, there is a high diversity of cells, resulted from what part of the genome the cells use, i.e. which RNA molecules are expressed. Rapid advances within the field of sequencing allow us to determine the RNA molecules expressed in a specific cell at a certain time. The use of the new technologies has expanded our view of the human transcriptome and increased our understanding of when, where, and how each RNA molecule is expressed. The work presented in this thesis focuses on analysis of the human transcriptome. In Paper I, we describe an automated approach for sample preparation. This protocol was compared with the standard manual protocol, and we demonstrated that the automated version outperformed the manual process in terms of sample throughput while maintaining high reproducibility. Paper II addresses the impact of nuclear transcripts on gene expression. We compared total RNA from whole cells and from cytoplasm, showing that transcripts with long, structured 3’- and 5’-untranslated regions and transcripts with long protein coding sequences tended to be retained in the nucleus. This resulted in increased complexity of the total RNA fraction and fewer reads per unique transcript. Papers III and IV describe dynamics of the human muscle transcriptome. For Paper III, we systematically investigated the transcriptome and found remarkably high tissue homogeneity, however a large number of genes and isoforms were differentially expressed between genders. Paper IV describes transcriptome differences in response to repeated training. No transcriptome-based memory was observed, however a large number of isoforms and genes were affected by training. Paper V describes a transcript profiling protocol based on the method Reverse Transcriptase Multiplex Ligation-dependent Probe Amplification. We designed the method for a few selected transcripts whose expression patterns are important for detecting breast cancer cells, and optimized the method for single cell analysis. We successfully detected cells in human blood samples and applied the method to single cells, confirming the heterogeneity of a cell population. / Människokroppen är uppbyggd av miljarder celler och nästan alla innehåller samma arvsmassa. Trots detta finns det många olika celler med olika funktioner vilket är en följd av vilken del av arvsmassan som cellerna använder, dvs vilka RNA-molekyler som finns i varje cell. Den snabba utvecklingen av sekvenseringstekniker har gjort det möjligt att studera när, var och hur varje RNA-molekyl är uttryckt och att få en djupare förståelse för hur människans celler fungerar. Arbetet som presenteras i denna avhandling fokuserar på analys av RNA-molekyler i människans celler. I artikel I beskriver vi en automatiserad metod för att förbereda cellprov för RNA-sekvensering. Det automatiserade protokollet jämfördes med det manuella protokollet, och vi visade att det automatiserade protokollet överträffade det manuella när det gällde provkapacitet samtidigt som en höga reproducerbarheten behölls. I artikel II undersökte vi effekterna som RNA-molekyler från en del av cellen (cellkärnan) har på den totala mängden uttryckta RNA-molekyler. Vi jämförde RNA från hela cellen och från en del av cellen (cytoplasman) och visade att RNA-molekyler med långa och strukturerade 3'- och 5'-otranslaterade regioner och RNA-molekyler med långa proteinkodande sekvenser tenderade att hållas kvar i cellkärnan till en högre grad. Detta resulterade i en ökad komplexitet av RNA-molekylerna i hela cellen, medan vi i cytoplasma-fraktionen lättare kunde hitta de korta och svagt uttryckta RNA-molekyler. I Artikel III och IV studerar vi RNA-molekyler i människans skelettmuskler. I artikel III visar vi att andelen RNA-molekyler uttryckta i skelettmuskler är väldigt lika mellan muskler och mellan olika personer, men att ett stort antal RNA-molekyler var uttryckta i olika nivåer hos kvinnor och män. Artikel IV beskriver RNA-nivåer som svar på upprepade perioder av uthållighetsträning. Artikel V beskriver en metod för att studera ett fåtal utvalda RNA-molekyler. Vi valde RNA-molekyler vars uttryck är viktigt vid analys av bröstcancerceller, och optimerade metoden för analys av enskilda celler. Vi analyserade cancerceller från blodprov och använde metoden för att titta på RNA-nivåer i enskilda celler från en grupp av celler och visade på skillnader i RNA-nivåer inom gruppen. / <p>QC 20150115</p>
3

Massively parallel analysis of cells and nucleic acids

Sandberg, Julia January 2011 (has links)
Recent proceedings in biotechnology have enabled completely new avenues in life science research to be explored. By allowing increased parallelization an ever-increasing complexity of cell samples or experiments can be investigated in shorter time and at a lower cost. This facilitates for example large-scale efforts to study cell heterogeneity at the single cell level, by analyzing cells in parallel that also can include global genomic analyses. The work presented in this thesis focuses on massively parallel analysis of cells or nucleic acid samples, demonstrating technology developments in the field as well as use of the technology in life sciences. In stem cell research issues such as cell morphology, cell differentiation and effects of reprogramming factors are frequently studied, and to obtain information on cell heterogeneity these experiments are preferably carried out on single cells. In paper I we used a high-density microwell device in silicon and glass for culturing and screening of stem cells. Maintained pluripotency in stem cells from human and mouse was demonstrated in a screening assay by antibody staining and the chip was furthermore used for studying neural differentiation. The chip format allows for low sample volumes and rapid high-throughput analysis of single cells, and is compatible with Fluorescence Activated Cell Sorting (FACS) for precise cell selection. Massively parallel DNA sequencing is revolutionizing genomics research throughout the life sciences by constantly producing increasing amounts of data from one sequencing run. However, the reagent costs and labor requirements in current massively parallel sequencing protocols are still substantial. In paper II-IV we have focused on flow-sorting techniques for improved sample preparation in bead-based massive sequencing platforms, with the aim of increasing the amount of quality data output, as demonstrated on the Roche/454 platform. In paper II we demonstrate a rapid alternative to the existing shotgun sample titration protocol and also use flow-sorting to enrich for beads that carry amplified template DNA after emulsion PCR, thus obtaining pure samples and with no downstream sacrifice of DNA sequencing quality. This should be seen in comparison to the standard 454-enrichment protocol, which gives rise to varying degrees of sample purity, thus affecting the sequence data output of the sequencing run. Massively parallel sequencing is also useful for deep sequencing of specific PCR-amplified targets in parallel. However, unspecific product formation is a common problem in amplicon sequencing and since these shorter products may be difficult to fully remove by standard procedures such as gel purification, and their presence inevitably reduces the number of target sequence reads that can be obtained in each sequencing run. In paper III a gene-specific fluorescent probe was used for target-specific FACS enrichment to specifically enrich for beads with an amplified target gene on the surface. Through this procedure a nearly three-fold increase in fraction of informative sequences was obtained and with no sequence bias introduced. Barcode labeling of different DNA libraries prior to pooling and emulsion PCR is standard procedure to maximize the number of experiments that can be run in one sequencing lane, while also decreasing the impact of technical noise. However, variation between libraries in quality and GC content affects amplification efficiency, which may result in biased fractions of the different libraries in the sequencing data. In paper IV barcode specific labeling and flow-sorting for normalization of beads with different barcodes on the surface was used in order to weigh the proportion of data obtained from different samples, while also removing mixed beads, and beads with no or poorly amplified product on the surface, hence also resulting in an increased sequence quality. In paper V, cell heterogeneity within a human being is being investigated by low-coverage whole genome sequencing of single cell material. By focusing on the most variable portion of the human genome, polyguanine nucleotide repeat regions, variability between different cells is investigated and highly variable polyguanine repeat loci are identified. By selectively amplifying and sequencing polyguanine nucleotide repeats from single cells for which the phylogenetic relationship is known, we demonstrate that massively parallel sequencing can be used to study cell-cell variation in length of these repeats, based on which a phylogenetic tree can be drawn. / QC 20111031
4

Parallel target selection by trinucleotide threading

Zajac, Pawel January 2009 (has links)
DNA is the code for all life. Via intermediary RNA the information encoded by the genome is relayed to proteins executing the various functions in a cell. Together, this repertoire of inherently linked biological macromolecules determines all characteristics and features of a cell. Technological advancements during the last decades have enabled the pursuit of novel types of studies and the investigation of the cell and its constituents at a progressively higher level of detail. This has shed light on numerous cellular processes and on the underpinnings of several diseases. For the majority of studies focusing on nucleic acids, an amplification step has to be implemented before an analysis, scoring or interrogation method translates the amplified material into relevant biological information. This information can, for instance, be the genotype of particular SNPs or STRs, or the abundance level of a set of interesting transcripts. As such, amplification plays a significant role in nucleic acid assays. Over the years, a number of techniques – most notably PCR – has been devised to meet this amplification need, specifically or randomly multiplying desired regions. However, many of the approaches do not scale up easily rendering comprehensive studies cumbersome, time-consuming and necessitating large quantities of material.Trinucleotide threading (TnT) – forming the red thread throughout this thesis – is a multiplex amplification method, enabling simultaneous targeted amplification of several nucleic acid regions in a specific manner. TnT begins with a controlled linear DNA thread formation, each type of thread corresponding to a segment of interest, by a gap-fill reaction using a restricted trinucleotide set. The whole collection of created threads is subsequently subjected to an exponential PCR amplification employing a single primer pair. The generated material can thereafter be analyzed with a multitude of readout and detection platforms depending on the issue or characteristic under consideration.TnT offers a high level of specificity by harnessing the inherent specificities of a polymerase and a ligase acting on a nucleotide set encompassing three out of the four nucleotide types. Accordingly, several erroneous events have to occur in order to produce artifacts. This necessitates override of a number of control points.The studies constituting this thesis demonstrate integration of the TnT amplification strategy in assays for analysis of various aspects of DNA and RNA. TnT was adapted for expression profiling of intermediately-sized gene sets using both conventional DNA microarrays and massively parallel second generation 454 sequencing for readout. TnT, in conjunction with 454 sequencing, was also employed for allelotyping, defined as determination of allele frequencies in a cohort. In this study, 147 SNPs were simultaneously assayed in a pool comprising genomic DNA of 462 individuals. Finally, TnT was recruited for parallel amplification of STR loci with detection relying on capillary gel electrophoresis. In all investigations, the material generated with TnT was of sufficient quality and quantity to produce reliable and accurate biological information.Taken together, TnT represents a viable multiplex amplification technique permitting parallel amplification of genomic segments, for instance harboring polymorphisms, or of expressed genes. In addition to these, this versatile amplification module can be implemented in assays targeting a range of other features of genomes and transcriptomes. / QC 20100819
5

Interrogation of Nucleic Acids by Parallel Threading

Pettersson, Erik January 2007 (has links)
Advancements in the field of biotechnology are expanding the scientific horizon and a promising era is envisioned with personalized medicine for improved health. The amount of genetic data is growing at an ever-escalating pace due to the availability of novel technologies that allow massively parallel sequencing and whole-genome genotyping, that are supported by the advancements in computer science and information technologies. As the amount of information stored in databases throughout the world is growing and our knowledge deepens, genetic signatures with significant importance are discovered. The surface of such a set in the data mining process may include causative- or marker single nucleotide polymorphisms (SNPs), revealing predisposition to disease, or gene expression signatures, profiling a pathological state. When targeting a reduced set of signatures in a large number of samples for diagnostic- or fine-mapping purposes, efficient interrogation and scoring require appropriate preparations. These needs are met by miniaturized and parallelized platforms that allow a low sample and template consumption. This doctoral thesis describes an attempt to tackle some of these challenges by the design and implementation of a novel assay denoted Trinucleotide Threading (TnT). The method permits multiplex amplification of a medium size set of specific loci and was adapted to genotyping, gene expression profiling and digital allelotyping. Utilizing a reduced number of nucleotides permits specific amplification of targeted loci while preventing the generation of spurious amplification products. This method was applied to genotype 96 individuals for 75 SNPs. In addition, the accuracy of genotyping from minute amounts of genomic DNA was confirmed. This procedure was performed using a robotic workstation running custom-made scripts and a software tool was implemented to facilitate the assay design. Furthermore, a statistical model was derived from the molecular principles of the genotyping assay and an Expectation-Maximization algorithm was chosen to automatically call the generated genotypes. The TnT approach was also adapted to profiling signature gene sets for the Swedish Human Protein Atlas Program. Here 18 protein epitope signature tags (PrESTs) were targeted in eight different cell lines employed in the program and the results demonstrated high concordance rates with real-time PCR approaches. Finally, an assay for digital estimation of allele frequencies in large cohorts was set up by combining the TnT approach with a second-generation sequencing system. Allelotyping was performed by targeting 147 polymorphic loci in a genomic pool of 462 individuals. Subsequent interrogation was carried out on a state-of-the-art massively parallelized Pyrosequencing instrument. The experiment generated more than 200,000 reads and with bioinformatic support, clonally amplified fragments and the corresponding sequence reads were converted to a precise set of allele frequencies. / QC 20100813

Page generated in 0.147 seconds