Spelling suggestions: "subject:"multiprocessors"" "subject:"multiprocessor""
41 |
Réconcilier performance et prédictibilité sur un many-coeur en utilisant des techniques d'ordonnancement hors-ligne / Reconciling performance and predictability on a noc-based mpsoc using off-line scheduling techniquesFakhfakh, Manel 27 June 2014 (has links)
Les réseaux-sur-puces (NoCs) utilisés dans les architectures multiprocesseurs-sur-puces posent des défis importants aux approches d'ordonnancement temps réel en ligne (dynamique) et hors-ligne (statique). Un NoC contient un grand nombre de points de contention potentiels, a une capacité de bufferisation limitée et le contrôle réseau fonctionne à l'échelle de petits paquets de données. Par conséquent, l'allocation efficace de ressources nécessite l'utilisation des algorithmes da faible complexité sur des modèles de matériel avec un niveau de détail sans précédent dans l'ordonnancement temps réel. Nous considérons dans cette thèse une approche d'ordonnancement statique sur des architectures massivement parallèles (Massively parallel processor arrays ou MPPAs) caractérisées par un grand nombre (quelques centaines) de c¿urs de calculs. Nous identifions les mécanismes matériels facilitant l'analyse temporelle et l'allocation efficace de ressources dans les MPPAs existants. Nous déterminons que le NoC devrait permettre l'ordonnancement hors-ligne de communications, d'une manière synchronisée avec l'ordonnancement de calculs sur les processeurs. Au niveau logiciel, nous proposons une nouvelle méthode d'allocation et d'ordonnancement capable de synthétiser des ordonnancements globaux de calculs et de communications couvrants toutes les ressources d'exécution, de communication et de la mémoire d'un MPPA. Afin de permettre une utilisation efficace de ressources du matériel, notre méthode prend en compte les spécificités architecturales d'un MPPA et implémente des techniques d'ordonnancement avancées comme la préemption pré-calculée de transmissions de données. Nous avons évalué n / On-chip networks (NoCs) used in multiprocessor systems-on-chips (MPSoCs) pose significant challenges to both on-line (dynamic) and off-line (static) real-time scheduling approaches. They have large numbers of potential contention points, have limited internal buffering capabilities, and network control operates at the scale of small data packets. Therefore, efficient resource allocation requires scalable algorithms working on hardware models with a level of detail that is unprecedented in real-time scheduling. We consider in this thesis a static scheduling approach, and we target massively parallel processor arrays (MPPAs), which are MPSoCs with large numbers (hundreds) of processing cores. We first identify and compare the hardware mechanisms supporting precise timing analysis and efficient resource allocation in existing MPPA platforms. We determine that the NoC should ideally provide the means of enforcing a global communications schedule that is computed off-line (before execution) and which is synchronized with the scheduling of computations on processors. On the software side, we propose a novel allocation and scheduling method capable of synthesizing such global computation and communication schedules covering all the execution, communication, and memory resources in an MPPA. To allow an efficient use of the hardware resources, our method takes into account the specificities of MPPA hardware and implements advanced scheduling techniques such as pre-computed preemption of data transmissions. We evaluate our technique by mapping two signal processing applications, for which we obtain good latency, throughput, and resource use figures.
|
42 |
Réalisation d'un réseau de neurones "SOM" sur une architecture matérielle adaptable et extensible à base de réseaux sur puce "NoC" / Neural Network Implementation on an Adaptable and Scalable Hardware Architecture based-on Network-on-ChipAbadi, Mehdi 07 July 2018 (has links)
Depuis son introduction en 1982, la carte auto-organisatrice de Kohonen (Self-Organizing Map : SOM) a prouvé ses capacités de classification et visualisation des données multidimensionnelles dans différents domaines d’application. Les implémentations matérielles de la carte SOM, en exploitant le taux de parallélisme élevé de l’algorithme de Kohonen, permettent d’augmenter les performances de ce modèle neuronal souvent au détriment de la flexibilité. D’autre part, la flexibilité est offerte par les implémentations logicielles qui quant à elles ne sont pas adaptées pour les applications temps réel à cause de leurs performances temporelles limitées. Dans cette thèse nous avons proposé une architecture matérielle distribuée, adaptable, flexible et extensible de la carte SOM à base de NoC dédiée pour une implantation matérielle sur FPGA. A base de cette approche, nous avons également proposé une architecture matérielle innovante d’une carte SOM à structure croissante au cours de la phase d’apprentissage / Since its introduction in 1982, Kohonen’s Self-Organizing Map (SOM) showed its ability to classify and visualize multidimensional data in various application fields. Hardware implementations of SOM, by exploiting the inherent parallelism of the Kohonen algorithm, allow to increase the overall performances of this neuronal network, often at the expense of the flexibility. On the other hand, the flexibility is offered by software implementations which on their side are not suited for real-time applications due to the limited time performances. In this thesis we proposed a distributed, adaptable, flexible and scalable hardware architecture of SOM based on Network-on-Chip (NoC) designed for FPGA implementation. Moreover, based on this approach we also proposed a novel hardware architecture of a growing SOM able to evolve its own structure during the learning phase
|
Page generated in 0.0672 seconds