Spelling suggestions: "subject:"quadric collocation method""
1 |
High precision computations of multiquadric collocation method for partial differential equationsLee, Cheng-Feng 14 June 2006 (has links)
Multiquadric collocation method is highly efficient for solving partial differential equations due to its exponential error convergence rate. More amazingly, there are two ways to reduce the error: the traditional way of refining the grid, and the unexpected way of simply increasing the value of shape constant $c$ contained in the multiquadric basis function, $sqrt{r^2 + c^2}$. The latter is accomplished without increasing computational cost. It has been speculated that in a numerical solution without roundoff error, infinite accuracy can be achieved by letting $c
ightarrow infty$. The ability to obtain infinitely accurate solution is limited only by the roundoff error induced instability of matrix solution with large condition number. Using the arbitrary precision computation capability of {it Mathematica}, this paper tests the above conjecture. A sharper error estimate than previously obtained is presented in this paper. A formula for a finite, optimal $c$ value that minimizes the solution error for a given grid size is obtained. Using residual errors, constants in error estimate and optimal $c$ formula can be obtained. These results are supported by numerical examples.
|
2 |
On the Increasingly Flat RBFs Based Solution Methods for Elliptic PDEs and InterpolationsYen, Hong-da 20 July 2009 (has links)
Many types of radial basis functions, such as multiquadrics, contain a free parameter called shape factor, which controls the flatness of RBFs. In the 1-D problems, Fornberg et al. [2] proved that with simple conditions on the increasingly flat radial basis function, the solutions converge to the Lagrange interpolating. In this report, we study and extend it to the 1-D Poisson equation RBFs direct solver, and observed that the interpolants converge to the Spectral Collocation Method using Polynomial. In 2-D, however, Fornberg et al. [2] observed that limit of interpolants fails to exist in cases of highly regular grid layouts. We also test this in the PDEs solver and found the error behavior is different from interpolating problem.
|
Page generated in 0.1377 seconds