Spelling suggestions: "subject:"multirresolução??o"" "subject:"multirresiduo??o""
1 |
Multifoveamento em multirresolu??o com f?veas m?veisMedeiros, Petr?cio Ricardo Tavares de 20 July 2016 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-03-14T21:32:46Z
No. of bitstreams: 1
PetrucioRicardoTavaresDeMedeiros_DISSERT.pdf: 5937912 bytes, checksum: c98c0e639d8348140e2635081d9744f4 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-03-15T22:29:35Z (GMT) No. of bitstreams: 1
PetrucioRicardoTavaresDeMedeiros_DISSERT.pdf: 5937912 bytes, checksum: c98c0e639d8348140e2635081d9744f4 (MD5) / Made available in DSpace on 2017-03-15T22:29:35Z (GMT). No. of bitstreams: 1
PetrucioRicardoTavaresDeMedeiros_DISSERT.pdf: 5937912 bytes, checksum: c98c0e639d8348140e2635081d9744f4 (MD5)
Previous issue date: 2016-07-20 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / O foveamento ? uma t?cnica de vis?o computacional capaz de promover a redu??o da
informa??o visual atrav?s de uma transforma??o da imagem, em dom?nio espacial, para o
dom?nio de multirresolu??o. Entretanto, esta t?cnica se limita a uma ?nica f?vea com mobilidade
dependente do contexto. Neste trabalho s?o propostas a defini??o e a constru??o
de um modelo multifoveado denominado MMMF (multifoveamento em multirresolu??o
com f?veas m?veis) baseado em um modelo anterior denominado MMF (multirresolu??o
com f?vea m?vel). Em um contexto de m?ltiplas f?veas, a aplica??o de v?rias estruturas
MMF, uma para cada f?vea, resulta em um consider?vel aumento de processamento,
uma vez que h? interse??es entre regi?es de estruturas distintas, as quais s?o processadas
m?ltiplas vezes. Dadas as estruturas de f?veas MMF, propomos um algoritmo para obter
regi?es disjuntas que devem ser processadas, evitando regi?es redundantes e, portanto,
reduzindo o tempo de processamento. Experimentos s?o propostos para validar o modelo
e verificar a sua aplicabilidade no contexto de vis?o computacional. Resultados demonstram
o ganho em termos de tempo de processamento do modelo proposto em rela??o ao
uso de m?ltiplas f?veas do modelo MMF. / Foveation is a computer vision technique for visual information reduction obtained
by applying an image transformation in the spatial domain to the multiresolution domain.
However, this technique is limited to a single fovea context-dependent mobility.
This work proposes the definition and the construction of a multifoveated model called
MMMF (Multiresolution Multifoveation using Mobile Foveae) based on an earlier model
called MMF (Multiresolution with Moving Fovea). In the context of multiple foveae, the
application of various MMF structures, one for each fovea, results in an increase in processing
time, since there are intersections between regions of different structures, which
are processed multiple times. Given MMF structures, an algorithm in order to get disjoint
regions which are to be processed is proposed, avoiding redundant regions and thereby
reducing the processing time. Experiments are proposed to validate the model and to verify
its applicability in the computer vision context. Results show the gain in processing
time of the proposed model compared to the use of multiple MMF structures.
|
2 |
Sele??o de features guiada por aten??o visual em imagens com f?veaGomes, Rafael Beserra 02 August 2013 (has links)
Made available in DSpace on 2014-12-17T14:55:16Z (GMT). No. of bitstreams: 1
RafaelBG_TESE.pdf: 2529249 bytes, checksum: b16afb21de612f10dcfa5acb69028967 (MD5)
Previous issue date: 2013-08-02 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Visual attention is a very important task in autonomous robotics, but, because of its
complexity, the processing time required is significant. We propose an architecture for
feature selection using foveated images that is guided by visual attention tasks and that
reduces the processing time required to perform these tasks. Our system can be applied
in bottom-up or top-down visual attention. The foveated model determines which scales
are to be used on the feature extraction algorithm. The system is able to discard features
that are not extremely necessary for the tasks, thus, reducing the processing time. If
the fovea is correctly placed, then it is possible to reduce the processing time without
compromising the quality of the tasks outputs. The distance of the fovea from the object
is also analyzed. If the visual system loses the tracking in top-down attention, basic
strategies of fovea placement can be applied. Experiments have shown that it is possible
to reduce up to 60% the processing time with this approach. To validate the method, we
tested it with the feature algorithm known as Speeded Up Robust Features (SURF), one
of the most efficient approaches for feature extraction. With the proposed architecture,
we can accomplish real time requirements of robotics vision, mainly to be applied in
autonomous robotics / A aten??o visual ? uma importante tarefa em rob?tica aut?noma, mas devido ? sua
complexidade, o tempo de processamento necess?rio ? significativo. Prop?e-se uma arquitetura
para sele??o de features usando imagens foveadas que ? guiada por tarefas envolvendo
aten??o visual e que reduz o tempo de processamento para realizar tais tarefas.
O sistema proposto pode ser aplicado para aten??o bottom-up ou top-down. O modelo
de foveamento determina quais escalas devem ser utilizadas no algoritmo de extra??o de
features. O sistema ? capaz de descartar features que n?o s?o essenciais para a realiza??o
da tarefa e, dessa forma, reduz o tempo de processamento. Se a f?vea ? corretamente
posicionada, ent?o ? poss?vel reduzir o tempo de processamento sem comprometer o desempenho
da tarefa. A dist?ncia da f?vea para o objeto tamb?m ? analisada. Caso o
sistema visual perca o tracking na aten??o top-down, estrat?gias b?sicas de reposicionamento
da f?vea podem ser aplicadas. Experimentos demonstram que ? poss?vel reduzir
em at? 60% o tempo de processamento com essa abordagem. Para validar o m?todo proposto,
s?o realizados testes com o algoritmo de extra??o de features SURF, um dos mais
eficientes existentes. Com a arquitetura proposta para sele??o de features, ? poss?vel cumprir
requisitos de um sistema de vis?o em tempo-real com poss?veis aplica??es na ?rea de
rob?tica
|
Page generated in 0.0545 seconds