• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A multiscale model for predicting damage evolution in heterogeneous viscoelastic media

Searcy, Chad Randall 15 November 2004 (has links)
A multiple scale theory is developed for the prediction of damage evolution in heterogeneous viscoelastic media. Asymptotic expansions of the field variables are used to derive a global scale viscoelastic constitutive equation that includes the effects of local scale damage. Damage, in the form discrete cracks, is allowed to grow according to a micromechanically-based viscoelastic traction-displacement law. Finite element formulations have been developed for both the global and local scale problems. These formulations have been implemented into a two-scale computational model Numerical results are given for several example problems in order to demonstrate the effectiveness of the technique.
2

A multiscale model for predicting damage evolution in heterogeneous viscoelastic media

Searcy, Chad Randall 15 November 2004 (has links)
A multiple scale theory is developed for the prediction of damage evolution in heterogeneous viscoelastic media. Asymptotic expansions of the field variables are used to derive a global scale viscoelastic constitutive equation that includes the effects of local scale damage. Damage, in the form discrete cracks, is allowed to grow according to a micromechanically-based viscoelastic traction-displacement law. Finite element formulations have been developed for both the global and local scale problems. These formulations have been implemented into a two-scale computational model Numerical results are given for several example problems in order to demonstrate the effectiveness of the technique.

Page generated in 0.0608 seconds