Spelling suggestions: "subject:"symplectic""
1 |
Estruturas polissimpléticas e multissimpléticas em variedades e fibrados / Polysymplectic and Multisymplectic forms on Manifolds and Fiber BundlesGomes, Leandro Gustavo 28 February 2007 (has links)
Neste trabalho, introduzimos uma nova classe de formas multilineares alternadas e de formas diferenciais, chamadas de formas polilagrangeanas (no caso de formas a valores vetoriais) ou multilagrangeanas (no caso de formas parcialmente horizontais em relação a um subespaço ou subfibrado dado), que são caracterizadas pela existência de um tipo especial de subespaço ou subfibrado maximal isotrópico chamado, respectivamente, de polilagrangeano ou multilagrangeano. Revela-se que estas constituem o arcabouço adequado para a formulação de um teorema de Darboux em nível algébrico. Combinando esta nova estrutura algébrica com propriedades padrão de integrabilidade (d! = 0) nos permite deduzir o teorema de Darboux no contexto geométrico (existência de coordenadas locais canônicas). Estruturas polissimpléticas e multissimpléticas, inclusive todas aquelas que aparecem no formalismo hamiltoniano covariante da teoria clássica dos campos, são contidas como caso especial. / In this thesis, we introduce a new class of multilinear alternating forms and of differential forms called polylagrangean (in the case of vector-valued forms) or multilagrangean (in the csae of forms that are partially horizontal with respect to a given subspace or subbundle), characterized by the existence of a special type of maximal isotropic subspace or subbundle called polylagrangean or multilagrangean, respectively. As it turns out, these constitute the adequate framework for the formulation of an algebraic Darboux theorem. Combining this new algebraic structure with standard integrability conditions (d! = 0) allows us to derive a geometric Darboux theorem (existence of canonical local coordinates). Polysymplectic and multisymplectic structures, including all those that appear in the covariant hamiltonian formalism of classical field theory, are contained as a special case.
|
2 |
Estruturas polissimpléticas e multissimpléticas em variedades e fibrados / Polysymplectic and Multisymplectic forms on Manifolds and Fiber BundlesLeandro Gustavo Gomes 28 February 2007 (has links)
Neste trabalho, introduzimos uma nova classe de formas multilineares alternadas e de formas diferenciais, chamadas de formas polilagrangeanas (no caso de formas a valores vetoriais) ou multilagrangeanas (no caso de formas parcialmente horizontais em relação a um subespaço ou subfibrado dado), que são caracterizadas pela existência de um tipo especial de subespaço ou subfibrado maximal isotrópico chamado, respectivamente, de polilagrangeano ou multilagrangeano. Revela-se que estas constituem o arcabouço adequado para a formulação de um teorema de Darboux em nível algébrico. Combinando esta nova estrutura algébrica com propriedades padrão de integrabilidade (d! = 0) nos permite deduzir o teorema de Darboux no contexto geométrico (existência de coordenadas locais canônicas). Estruturas polissimpléticas e multissimpléticas, inclusive todas aquelas que aparecem no formalismo hamiltoniano covariante da teoria clássica dos campos, são contidas como caso especial. / In this thesis, we introduce a new class of multilinear alternating forms and of differential forms called polylagrangean (in the case of vector-valued forms) or multilagrangean (in the csae of forms that are partially horizontal with respect to a given subspace or subbundle), characterized by the existence of a special type of maximal isotropic subspace or subbundle called polylagrangean or multilagrangean, respectively. As it turns out, these constitute the adequate framework for the formulation of an algebraic Darboux theorem. Combining this new algebraic structure with standard integrability conditions (d! = 0) allows us to derive a geometric Darboux theorem (existence of canonical local coordinates). Polysymplectic and multisymplectic structures, including all those that appear in the covariant hamiltonian formalism of classical field theory, are contained as a special case.
|
3 |
Multisymplectic formalism for theories of super-fields and non-equivalent symplectic structures on the covariant phase space / Le formalisme multisymplectique pour les théories des super-champs et les structures symplectiques non-équivalentes sur l'espace des phases co-variantVeglia, Luca 07 December 2016 (has links)
Le Calcul des Variations et son interprétation géométrique ont toujours joué un rôle crucial en Physique Mathématique, que ce soit par le formalisme lagrangien, ou à travers les équations hamiltoniennes.Le formalisme multisymplectique permet une description géométrique de dimension finie des théories de champ classiques (qui correspondent à des problèmes variationnels avec plusieurs variables spatio-temporelles) vues d’un point de vue hamiltonien. La géométrie multisymplectique joue un rôle similaire à celui de la géométrie symplectique dans la description de la mécanique hamiltonienne classique. De plus, l’approche multisymplectique fournit un outil pour construire une structure symplectique sur l’espace des solutions de la théorie des champs et pour l’étudier.Dans cette thèse, je m’intéresse principalement au formalisme multisymplectique pour construire des théories de champs de premier ordre et j’espère pouvoir donner deux principales contributions originales :– Je montre que, dans certaines situations, la structure symplectique de l’espace des phases covariant peut en effet dépendre du choix de la topologie du découpage de l’espace-temps en l’espace et en le temps;– Je construis une extension du formalisme multisymplectique aux théories de super-champs. En tant que «sous-produit», je présente une autre contribution que j’espère intéressante :– Je définie des formes fractionnaires sur des supervariétés avec leur calcul de Cartan. Ces formes fractionnaires se révèlent utiles pour construire le formalisme multisymplectique pour les théories de super-champs.Les ingrédients principaux du formalisme que j'utilise sont : l’espace des multimoments de dimension finie P et son extension aux théories de super-champs que je définie ; la superforme lagrangienne, le superhamiltonien et la superforme multisymplectique. Dans la thèse je montre aussi un théorème de comparaison qui permets de clarifier les relations existant entre les théories dites en composantes et les théories de superchamps. J’explique comment le formalisme supermultisymplectique peut être utilisé pour définir des super crochets de Poisson pour les superchamps. Je donne une version "super" du premier théorème de Noether valable pour l'action de supergroupes de symétrie et je propose une extension « super » de l'application multimoment. Enfin je présente quelques exemples montrant comment toute la théorie peut être mise en œuvre : en particulier j'étudie la superparticule libre et le modèle sigma 3-dimensionnel. / The Calculus of Variations and its geometric interpretation always played a key role in Mathematical Physics, either through the Lagrangian formalism, or through the Hamiltonian equations.The multisymplectic formalism allows a finite dimensional geometric description of classical field theories seen from an Hamiltonian point of view. Multisymplectic geometry plays the same role played by symplectic geometry in the description of classical Hamiltonian mechanics. Moreover the multisymplectic approach provides a tool for building a symplectic structure on the space of solutions of the field theory and for investigating it.In this thesis I use the multisymplectic formalism to build first order field theories and I hope to give two main original contributions:– I show that, in some situations, the symplectic structure on the covariant phase space may indeed depend from the choice of splitting of spacetime in space and time;– I extend the multisymplectic formalism to superfield theories.As a "byproduct", I present another contribution:– I define fractional forms on supermanifolds with their relative Cartan Calculus. These fractional forms are useful to build the multisymplectic formalism for superfield theories.The main ingredients of the formalism I use are: the finite dimensional multimomenta phase space P and its extension to super field theories, which I give; the Lagrangian superform; the super-Hamiltonian, the multisymplectic superform.In my thesis I also prove a Comparison Theorem which allows to clarify the relations existing between the so called components theories and the so called superfield theories. I explain how the supermultisymplectic formalism can be used to define super Poisson brackets for super fields. I give a "super" version of the first Noether theorem valid for the action of supergroups of symmetry and I propose a “super” extension of the multimomentum map.Finally I present some examples showing how all the theory can be implemented: I study the free superparticle and the 3-dimensional sigma-model.
|
4 |
Stability And Preservation Properties Of Multisymplectic IntegratorsWlodarczyk, Tomasz 01 January 2007 (has links)
This dissertation presents results of the study on symplectic and multisymplectic numerical methods for solving linear and nonlinear Hamiltonian wave equations. The emphasis is put on the second order space and time discretizations of the linear wave, the Klein-Gordon and the sine-Gordon equations. For those equations we develop two multisymplectic (MS) integrators and compare their performance to other popular symplectic and non-symplectic numerical methods. Tools used in the linear analysis are related to the Fourier transform and consist of the dispersion relationship and the power spectrum of the numerical solution. Nonlinear analysis, in turn, is closely connected to the temporal evolution of the total energy (Hamiltonian) and can be viewed from the topological perspective as preservation of the phase space structures. Using both linear and nonlinear diagnostics we find qualitative differences between MS and non-MS methods. The first difference can be noted in simulations of the linear wave equation solved for broad spectrum Gaussian initial data. Initial wave profiles of this type immediately split into an oscillatory wave-train with the high modes traveling faster (MS schemes), or slower (non-MS methods), than the analytic group velocity. This result is confirmed by an analysis of the dispersion relationship, which also indicates improved qualitative agreement of the dispersive curves for MS methods over non-MS ones. Moreover, observations of the convergence patterns in the wave profile obtained for the sine-Gordon equation for the initial data corresponding to the double-pole soliton and the temporal evolution of the Hamiltonian functional computed for solutions obtained from different discretizations suggest a change of the geometry of the phase space. Finally, we present some theoretical considerations concerning wave action. Lagrangian formulation of linear partial differential equations (PDEs) with slowly varying solutions is capable of linking the wave action conservation law with the dispersion relationship thus suggesting the possibility to extend this connection to multisymplectic PDEs.
|
5 |
Multisymplectic integration : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematical Physics at Massey University, Palmerston North, New ZealandRyland, Brett Nicholas January 2007 (has links)
Multisymplectic integration is a relatively new addition to the field of geometric integration, which is a modern approach to the numerical integration of systems of differential equations. Multisymplectic integration is carried out by numerical integrators known as multisymplectic integrators, which preserve a discrete analogue of a multisymplectic conservation law. In recent years, it has been shown that various discretisations of a multi-Hamiltonian PDE satisfy a discrete analogue of a multisymplectic conservation law. In particular, discretisation in time and space by the popular symplectic Runge–Kutta methods has been shown to be multisymplectic. However, a multisymplectic integrator not only needs to satisfy a discrete multisymplectic conservation law, but it must also form a well-defined numerical method. One of the main questions considered in this thesis is that of when a multi-Hamiltonian PDE discretised by Runge–Kutta or partitioned Runge–Kutta methods gives rise to a well-defined multisymplectic integrator. In particular, multisymplectic integrators that are explicit are sought, since an integrator that is explicit will, in general, be well defined. The first class of discretisation methods that I consider are the popular symplectic Runge–Kutta methods. These have previously been shown to satisfy a discrete analogue of the multisymplectic conservation law. However, these previous studies typically fail to consider whether or not the system of equations resulting from such a discretisation is well defined. By considering the semi-discretisation and the full discretisation of a multi-Hamiltonian PDE by such methods, I show the following: • For Runge–Kutta (and for partitioned Runge–Kutta methods), the active variables in the spatial discretisation are the stage variables of the method, not the node variables (as is typical in the time integration of ODEs). • The equations resulting from a semi-discretisation with periodic boundary conditions are only well defined when both the number of stages in the Runge–Kutta method and the number of cells in the spatial discretisation are odd. For other types of boundary conditions, these equations are not well defined in general. • For a full discretisation, the numerical method appears to be well defined at first, but for some boundary conditions, the numerical method fails to accurately represent the PDE, while for other boundary conditions, the numerical method is highly implicit, ill-conditioned and impractical for all but the simplest of applications. An exception to this is the Preissman box scheme, whose simplicity avoids the difficulties of higher order methods. • For a multisymplectic integrator, boundary conditions are treated differently in time and in space. This breaks the symmetry between time and space that is inherent in multisymplectic geometry. The second class of discretisation methods that I consider are partitioned Runge– Kutta methods. Discretisation of a multi-Hamiltonian PDE by such methods has lead to the following two major results: 1. There is a simple set of conditions on the coefficients of a general partitioned Runge– Kutta method (which includes Runge–Kutta methods) such that a general multi- Hamiltonian PDE, discretised (either fully or partially) by such methods, satisfies a natural discrete analogue of the multisymplectic conservation law associated with that multi-Hamiltonian PDE. 2. I have defined a class of multi-Hamiltonian PDEs that, when discretised in space by a member of the Lobatto IIIA–IIIB class of partitioned Runge–Kutta methods, give rise to a system of explicit ODEs in time by means of a construction algorithm. These ODEs are well defined (since they are explicit), local, high order, multisymplectic and handle boundary conditions in a simple manner without the need for any extra requirements. Furthermore, by analysing the dispersion relation for these explicit ODEs, it is found that such spatial discretisations are stable. From these explicit ODEs in time, well-defined multisymplectic integrators can be constructed by applying an explicit discretisation in time that satisfies a fully discrete analogue of the semi-discrete multisymplectic conservation law satisfied by the ODEs. Three examples of explicit multisymplectic integrators are given for the nonlinear Schr¨odinger equation, whereby the explicit ODEs in time are discretised by the 2-stage Lobatto IIIA– IIIB, linear–nonlinear splitting and real–imaginary–nonlinear splitting methods. These are all shown to satisfy discrete analogues of the multisymplectic conservation law, however, only the discrete multisymplectic conservation laws satisfied by the first and third multisymplectic integrators are local. Since it is the stage variables that are active in a Runge–Kutta or partitioned Runge– Kutta discretisation in space of a multi-Hamiltonian PDE, the order of such a spatial discretisation is limited by the order of the stage variables. Moreover, the spatial discretisation contains an approximation of the spatial derivatives, and thus, the order of the spatial discretisation may be further limited by the order of this approximation. For the explicit ODEs resulting from an r-stage Lobatto IIIA–IIIB discretisation in space of an appropriate multi-Hamiltonian PDE, the order of this spatial discretisation is r - 1 for r = 10; this is conjectured to hold for higher values of r. For r = 3, I show that a modification to the initial conditions improves the order of this spatial discretisation. It is expected that a similar modification to the initial conditions will improve the order of such spatial discretisations for higher values of r.
|
6 |
Mappe comomento omotopiche in geometria multisimplettica / HOMOTOPY COMOMENTUM MAPS IN MULTISYMPLECTIC GEOMETRYMITI, ANTONIO MICHELE 01 April 2021 (has links)
Le mappe comomento omotopiche sono una generalizzazione della nozione di mappa momento introdotta al fine di estendere il concetto di azione hamiltoniana al contesto della geometria multisimplettica.
L'obiettivo di questa tesi è fornire nuove costruzioni esplicite ed esempi concreti di azioni di gruppi di Lie su varietà multisimplettiche che ammettono delle mappe comomento.
Il primo risultato è una classificazione completa delle azioni di gruppi compatti su sfere multisimplettiche.
In questo caso, l'esistenza di mappe comomento omotopiche dipende dalla dimensione della sfera e dalla transitività dell'azione di gruppo.
Il secondo risultato è la costruzione esplicita di un analogo multisimplettico dell’inclusione dell'algebra di Poisson di una varietà simplettica dentro il corrispondente algebroide di Lie twistato.
E’ possibile dimostrare che questa inclusione soddisfa una relazione di compatibilità nel caso di varietà multisimplettiche gauge-correlate in presenza di un'azione di gruppo Hamiltoniana.
Tale costruzione potrebbe giocare un ruolo nella formulazione di un analogo multisimplettico della procedura di quantizzazione geometrica.
L’ultimo risultato è una costruzione concreta di una mappa comomento omotopica relativa all'azione multisimplettica del gruppo di diffeomorfismi che preservano la forma volume dello spazio Euclideo.
Questa mappa ammette naturalmente un’interpretazione idrodinamica, nello specifico trasgredisce alla mappa comomento idrodinamica introdotta da Arnol'd, Marsden, Weinstein e altri.
La mappa comomento così costruita può essere inoltre messa in relazione alla teoria dei nodi avvalendosi dell’approccio ai link nel formalismo dei vortici. Questo punto di apre la strada a un'interpretazione semiclassica del polinomio HOMFLYPT nel linguaggio della quantizzazione geometrica. / Homotopy comomentum maps are a higher generalization of the notion of moment map introduced to extend the concept of Hamiltonian actions to the framework of multisymplectic geometry.
Loosely speaking, higher means passing from considering symplectic $2$-form to consider differential forms in higher degrees.
The goal of this thesis is to provide new explicit constructions and concrete examples related to group actions on multisymplectic manifolds admitting homotopy comomentum maps.
The first result is a complete classification of compact group actions on multisymplectic spheres. The existence of a homotopy comomentum maps pertaining to the latter depends on the dimension of the sphere and the transitivity of the group action. Several concrete examples of such actions are also provided.
The second novel result is the explicit construction of the higher analogue of the embedding of the Poisson algebra of a given symplectic manifold
into the corresponding twisted Lie algebroid.
It is also proved a compatibility condition for such embedding for gauge-related multisymplectic manifolds in presence of a compatible Hamiltonian group action. The latter construction could play a role in determining the multisymplectic analogue of the geometric quantization procedure.
Finally a concrete construction of a homotopy comomentum map for the action of the group of volume-preserving diffeomorphisms on the multisymplectic 3-dimensional Euclidean space is proposed.
This map can be naturally related to hydrodynamics. For instance, it transgresses to the standard hydrodynamical co-momentum map of Arnol'd, Marsden and Weinstein and others.
A slight generalization of this construction to a special class of Riemannian manifolds is also provided.
The explicitly constructed homotopy comomentum map can be also related to knot theory
by virtue of the aforementioned hydrodynamical interpretation.
Namely, it allows for a reinterpretation of (higher-order) linking numbers in terms of multisymplectic conserved quantities.
As an aside, it also paves the road for a semiclassical interpretation of the HOMFLYPT polynomial in the language of geometric quantization.
|
7 |
Geometric Integrators For Coupled Nonlinear Schrodinger EquationAydin, Ayhan 01 January 2005 (has links) (PDF)
Multisymplectic integrators like Preissman and six-point schemes and a semi-explicit symplectic method are applied to the coupled nonlinear Schrö / dinger equations (CNLSE). Energy, momentum and additional conserved quantities are preserved by the multisymplectic integrators, which are shown using modified equations. The multisymplectic schemes are backward stable and non-dissipative. A semi-explicit method which is symplectic in the space variable and based on linear-nonlinear, even-odd splitting in time is derived. These methods are applied to the CNLSE with plane wave and soliton solutions for various combinations of the parameters of the equation. The numerical results confirm the excellent long time behavior of the conserved quantities and preservation of the shape of the soliton solutions in space and
time.
|
Page generated in 0.0621 seconds